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The objective of this study is to develop a procedure 
for generating "closed-form" finite series solutions for 
thermal deformation and stress resulting from any heat input 
or temperature distribution throughout the thickness of 
multilayered structures of arbitrary shapes and boundary 
conditions.

The Rayleigh-Ritz method is used in this study to 
evaluate the deflection in structures with boundary 
conditions which can be readily satisfied by a preselected 
deflection function. For structures with complex boundary 
conditions and shapes including holes with arbitrary 
geometry, the analysis is accomplished by incorporating the 
Lagrange Multipliers approach in the Rayleigh-Ritz method in

V
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order to satisfy the constraints at the boundaries in a 
discrete manner.

A simplified finite difference method is also utilized 
for rapid evaluation of the transient temperature 
distribution in homogeneous and composite structures due to 
arbitrary heat flux conditions.

In all the cases considered for illustration, the CPU 
time required to reach a converging solution is found to be 
orders of magnitude smaller than that required to solve this 
class of problems by finite element analysis. An important 
advantage of the proposed approach is that the solution is a 
continuous finite series rather than discrete numerical data 
at the nodes or elements of the selected mesh.

vi
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CHAPTER 1
INTRODUCTION

The Thermal Loading

Thermal stress analysis of structures has been studied 
by investigators for years. The thermal stress evaluation in 
composite laminates is also extensively discussed in the 
literature. Examples include simply supported sandwich 
panels[l], laminated shells[2,3,4, 5] and fiber-reinforced 
composites[6] . Other examples include the structural 
elements in nuclear power plants[7] where the thermal- 
structural behavior and performance is of critical 
importance. There are many techniques which evaluate the 
thermal stress in various structures such as the case of 
beams during hot dip galvanizing[8] , plates with different 
material properties[2,3,9,10,12] and three-dimensional solid 
structures[3,11]. Most of the previous techniques are based 
on discrete numerical methods such as finite element 
method(F.E.M.) or finite difference method for calculating 
the temperature and stress distribution. Since the highest 
thermal stress and deformation in structures often do not 
take place at steady state condition, the transient 
temperature distribution[12,13,14,15] at which the maximum 
conditions occur plays an important role in thermal stress 
analysis.

l
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In this study, the transient thermal analysis is 
performed by a simplified finite difference method[16]. 
This technique combines the principle of conservation of 
energy and the theory of heat penetration distance to 
calculate the temperature field at any instant of time. The 
finite difference equations of incremental control volumes 
are generated by using the principle of conservation of 
energy. These control volumes can be determined by 
utilizing the heat penetration distance. Therefore, two- 
dimensional and three-dimensional transient thermal analyses 
can always be possible to reduced to one-dimensional 
problems.

Finite Element Analysis

Recent developments in modern digital computers have 
resulted in extensive activity in the field of structural 
design and thermal analysis. Of particular importance is 
the use of the finite element method in this class of 
problems. It is a very flexible and general method which 
can be applied to most of the elastic-plastic and thermal- 
elastic problems, even in the nonlinear domain[ 17,18] . It 
also can handle complex shapes, loading and material 
properties[19].
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Modified Rayleigh-Ritz Method by Utilizing 
Lagrange Multiplier

There are numerous classical methods which have been 
developed on the basis of the minimum energy principle. 
Most of these methods are based on the "principle of minimum 
potential energy" such as the Rayleigh-Ritz method. The 
application of the Rayleigh-Ritz method in simple structural 
analysis can be found in many references[20,21,22]. These 
applications are generally limited to simple problems, such 
as a simply-supported beam, or simply-supported plate. Since 
the Rayleigh-Ritz method requires that the assumed 
deflection function has to satisfy the boundary conditions, 
it may not be always possible to find a solution which meets 
all the boundary condition requirements and minimizes the 
assumed function at the same time.

In order to solve problems with complex shapes and 
arbitrary boundary conditions, the Rayleigh-Ritz method is 
modified to incorporate the Lagrangian approach for dealing 
with equality constraints [23,24,25,26]. In this approach, 
the boundary conditions are forced to be satisfied with the 
use of a Lagrangian function which includes the necessary 
equality constraints with undetermined multipliers. By 
applying this method, a finite series solution can be 
obtained for many difficult elasticity problems with 
arbitrary shapes and boundary conditions.
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The main objective of this study is to developed a 
closed-form solution for thermo-elastic problems with 
arbitrary shapes and boundary conditions. The proposed 
method is divided into two parts: the first part generates 
the solution for the transient temperature distribution and 
transforms it to an equivalent mechanical loading, the other 
part evaluates the deformation and thermal stress for the 
structure subjected the equivalent mechanical loading. By 
combining the two techniques, the thermo-elastic problems 
can be solved in a very small fraction of the CPU time 
required when using the F.E.A. Furthermore, the solution is 
obtained in the form of a finite series which is applicable 
to the entire geometry without the need for preprocessing, 
postprocessing or making decisions on the structure of the 
mesh for each problem.

Several numerical examples will be considered to 
evaluate the merits of the proposed approach. A detailed 
illustration of the proposed process with the calculated 
numerical data will be given in the Appendix. It can be 
used as a demonstration of the different steps involved in 
the analysis and the numerical results from each step.

All the considered examples were also analyzed by using 
the finite elements method for comparison. The finite 
element models are created and analyzed by commercial F.E.M. 
software (COSMOS/M version 1.71) . Both the F.E.M. and the 
proposed approach are implemented on a 486-DX2 personal 
computer.
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CHAPTER 2
THE TEMPERATURE DISTRIBUTION

The General Formulation of the Finite Difference Algorithm

Before solving for the deformation of the structure 
under thermal loading, it is necessary to perform the 
thermal analysis by which the temperature field in this 
structure is achieved. There are many methods that have 
been developed to resolve the heat transfer problems. In 
this dissertation, the transient heat transfer problems are 
solved by using the finite difference method[16]. The 
general concepts of finite difference are based on the 
principle of conservation of energy(the first law of 
thermodynamics) and the theory of heat penetration distance.

From the principle of conservation of energy, the 
temperature at each control volume is determined by sets of 
difference equations. In this approach, the control volumes 
have to be defined beforehand. The theory of control volume 
is discussed in later sections of this chapter for different 
types of shapes.

After formulating the difference equations for the 
temperatures of the control volumes, the heat penetration 
distance at that instant of time has to be monitored. If 
the control volume is beyond the heat penetration distance,

5
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there is no heat transfer on the boundary of the control 
volume. Therefore, by using the temperature difference 
equations and the theory of heat penetrate distance, the 
temperature of each control volume can be evaluated. The 
temperature field of the structure can be numerically 
determined at any instant by the calculated temperatures of 
control volumes.

In later sections, the finite difference results will 
be compared with the results of finite element analysis 
(F.E.A.) models. Since the finite difference method is a 
simplified one-dimensional heat transfer for all kinds of 
geometrical shapes, it is expected that the finite 
difference method would be much faster than F.E.A.

One-Dimensional Problems 
For one-dimensional single-material problems, The heat 

flows only in one direction. For problems of beams with 
surface heat input, this direction is the direction of the 
thickness of the beam. In figure 2.1, the thickness of the 
beam is divided into a number of layers whose thickness is 
the thickness of the control volume. The volume and surface 
area of heat transfer of each control volume are defined in 
equations (2.1) and (2.2).

The surface area of each control volume is 
A = Ai = A i = Ai =...= An = An + i = bL (2.1)
The volume of each control volume
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i/ *>UhVi = Vn + i=— —  (2.2a)

V i  = Vi  = ... = Vn -1 = bL&h (2.2b)
where b : width of beam 

L : length of beam 
h : thickness of beam 

Ah : thickness of layers except first and last 
layers

L
(a)

layer 1 
layer 2

layer k

layer n+1

Ah/2

Ah

Ah/2

(b)
Figure 2.1 (a) The beam configuration with heat source Qin 

(b) The control volume of the beam
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The assumptions for this case are as given below:
1. The temperature is assumed uniform within any layer.
2. This analysis considers the transient temperature 

variations along the depth of the beam and neglects 
the less significant variations along the length.

3. The beam is subjected to a uniform heat rate Qin at 
its external upper surface.

4. There is no heat loss from the boundary of the beam 
to the surrounding.

The conservation of energy principal shown in equation 
(2.3) is essentially an energy balance. The stored energy in 
the material is what makes the temperature of the material 
rise.

Q i n  —  QouC =  Qstored (2.3)

The finite difference scheme is a simplified one 
dimensional finite difference analysis. The beam shown in 
figure 2.1 is divided into n+1 layers. The temperatures at 
every surface (upper or lower) are the main parameters in 
this case. Their evaluation is based on the conservation of 
energy principal for a control volume (the shade area in 
figure 2.2).
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f

Heat

Control
volume

Figure 2.2 The heat transfer for the control volume

KA(Tk -  i .  t  -  Tk. c A K\t ,
Qc. k =  ---------------------------------------- At =   A  Tk -  i . e -  Tk. t

Ah Ah

Tk, t — Tk + l, t KAa  t  
Qc. k + i = K A A t-----    = —  (Tk, t - Tk + i, t))

Ah Ah

Qstored — p  CVk(Tk, c + X — Tk, t)

where K : thermal conductivity

(2.4)

(2.5)

(2 .6)

Applying equation (2.3), the temperature Tic,c+i after a 
time step At can be presented in equation (2.7) .

KAAt KAAt
pcVk(Tk, t + 1 — Tk, c) =   (Tk -  1, t  -  Tk. c )  (Tk, t -  Tfc + 1, c)

Ah Ah

KAtA  _  2KXtA %
Tk, t k 1 =  ---------------  (Tk -  1, t  +  Tk + 1, c) +  ( 1  )Tk, t

pcVkAh pcVkAh ( 2 . 7 )

Similar expressions can be obtained for the temperature 
at the bottom and top surfaces. The difference equation 
(2.8) can be written as:
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For the top surface:

Q in

Figure 2.3 Heat transfer for the first layer

pcV i(To, t + i — To, c)
KAAt ,

AQin&t —  (To, t — T i. e)
Ah

2AtA  - 2Ka LA ^  2K&tA
To, c + i =  Qin + (1 — ------------- )To, e +  ---------------T i. c (2.8)

pcVi pcViAh pcViAh

At the bottom layer of the beam shown in figure 2.4, it 
is assumed that the heat does not transfer to the 
surrounding, and the only inputs are from the upper layer. 
The difference equation can be written as:

n-l,t

TLn,t

Figure 2.4 Heat transfer for the last layer
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pCVn(T:

Ta, t + 1 —
2KAAt

pcVtAh
Ta -  i. e +  (1  -

pcV iA h (2.9)

The current time is automatically updated in the 
program and it can determine the distance that the heat 
penetrates into the beam. This penetration distance shown 
in equation (2.10) is modified in the temperature difference 
equations based on the particular instant of time according 
to the following relationship:

where tp : penetration time (sec)
Dp : penetration distance 
P : thermal diffusivity(K/pc)

When the distance between the heat source and heat 
exchange surface of the control volume is more than the 
penetration distance, no heat exchange occurs. The general 
procedure is therefore as described below:

1. Input the dimensions of the beam:
beam thickness(h) 
beam width(b) 
beam length(L)

2. Input the material constants
Density of the material(p)
Thermal conductivity(k)
Specific heat(c)

0.0891

0.0891 (2 .10)
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3. Input heat source (Qin) and total heating time, t
4. Set up time step(At)
5. Calculate the volume and surface area of the control 

volume

6. Record the current time = time+ At

7. Compute how many layers have heat exchange.
8. Solve the temperature difference equation
9. Repeat steps 6 to 8 until the current time is equal 

to the total heating time.
The flow chart for the program is shown in figure 2.5.
For the case of a composite beam shown in figure 2.6, 

the surface area of the control volume for each material and 
the volume of control volume for the material 1 are the same 
as in the single material case. Due to the theory of heat 
penetration distance, the volume of control volume for the 
rest of the materials can be determined in equation (2.12) .

For the layers of the first material:

(2.11a)

V*.i = bLtshx , k=2 to nl (2.lib)
For the rest:

(2.12a)

Vi. I = bU Jii, k=2 to n2 (2.12b)
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( Start

Define material properi ties and inital condition

Set up properities of control volume

update ^  current time

Modifed finite difference approach

Yes Time<totaltime

No

Stop

Figure 2.5 The flow chart of one dimensional heat transfer
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material  1

material  2

material  k

material  m

Figure 2.6 The configuration of composite beam
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It is more convenient to define the heat density, HD, 
for each layer in the different material.

For a layer of material i,
HDk  = p iaVj. i&hi (2.13)

Where k = ^ m  + j  is the global count of the layer number
i

The temperature difference equations, as modified by

replacing the pcV part into the HD, are given in equations
(2.14),(2.15) and (2.16).

For the first layer:
2AtMin - „ 2fCiAtA, 2fCiAtA

To. t + l  =  ----------------- Qin +  ( 1 ------------------- yro, e +  ---------------T l. eHDi HDi HDi

(2.14)
For the last layer:

2-KoitA m „ 2Kn&tA
Ta. t + 1 =  -------------- Tn -  1. t  +  (1--------------------)Tn, t  (2.15)

HDn HDn

where Ahi: the layer thickness of the last material
For the remaining layers in material j:

Kk&tA m % „ 2KkAtA
Tk. t + i =   (Tk -  1. t  +  Tk + 1. e) +  (1-------------------yTk. t  (2.16)

HDk HDk

As can be seen, the general procedure is the same as in
the single material case. The only difference between the
two cases is the algorithm used to generate the finite
difference equations.
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L=0.1

(a)

(b)
Figure 2.7

(a) The configuration of the beam with thermal loading
(b) The F.E.A. model of Example 2.1(66 nodes, 50 elements

and 100 time steps)
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Illustrative example 

Example 2.1
In this case, a homogeneous beam is subjected to a heat 

flux at its upper surface. The configuration of the beam is 
shown in figure 2.7a. The finite element model is shown in 
figure 2.7b.

The material properties, initial heat input conditions 
and the dimension of the beam are given below:

For Steel:
Density of material(steel),p=7900 (Kg/m3)
Thermal conductivity(steel), k = 45 (W/m-°C)
Specific heat(steel), c=460 (J/kg-°C)

heat input, (2=10 Watt 
Heat time, t=60 (sec)
the dimension of the beam: 
beam thickness, h=0.1 (m) 
beam width, b=0.01 (m) 
beam length, L=0.1 (m)

The performance of the finite difference(F.D.) method is
compared with the finite element analysis(F.E.A.) with
regard to temperature distribution as shown in table 2.1 and
figure 2.8, as well as the CPU running time as shown in
table 2.2. It can be seen that very close results are
obtained by the F.D. method and the F.E.A. The F.D. method,
however, is much faster than the F.E.A.
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Table 2.1 The comparison of temperature distribution
between F.E.A. and F.D.

thickness F.D. F.E.A.
0 216.4819 203

0.01 90.1579 90.3
0.02 50.6328 51.9
0.03 29.7326 31.1
0.04 17.3734 18.6
0.05 9.8916 10.9
0.06 5.4076 6.21
0.07 2.7893 3 .46
0.08 1.3114 1.91
0.09 0.4953 1.14
0.1 0 0 .91

250

200

150 -

100 ■

50 -

S 3 3 S 80 0 0 0 0o KO s s© oo

thickness

Figure 2.8 The comparison of temperature distribution 
through the thickness between F.E.A. and F.D.
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Table 2.2 the comparison of running time of CPU
between F.E.A. and F.D.

F.E.A. F.D.
CPU Time (sec) 56 5

Example 2.2
This example considers a composite structure with two 

materials, Steel and Aluminum, subject to a heat input at 
the upper surface. The configuration of the beam with the 
thermal loading is shown in figure 2.9a. The finite element 
model is shown in figure 2.9b.

The material properties and initial conditions for this 
case as follows:

For Steel:
Density of material of Steel ,p=7900 (Kg/m3)
Thermal conductivity of Steel, k = 45 (W/m-°K)
Specific heat of Steel, c=460 (J/kg-°K)
For Aluminum:
Density of material of Aluminum,p=2700 (Kg/m3)
Thermal conductivity of Aluminum, k = 200 (W/m-°K) 
Specific heat of Aluminum, c=900 (J/kg-°K)
Heat input time, t=120 (sec), Qin=l • (Watt) 
beam width b=0.01 (m)
The performance of the finite difference method is 

compared with the finite element analysis with regard to the 
temperature distribution as shown in table 2.3 and figure 
2.9, as well as the CPU running time as shown in table 2.4. 
Again, the results of F.D. and F.E.A are very similar and 
the F.D. is much faster than the F.E.A.
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0.1 m

' '

Steel

i
0.1 m

'

I

'

Aluminium

M  ►
o to 3

(a)

Aluminium

(b)
Figure 2.9

(a) The configuration of the beam with thermal loading 
(b) The F.E.A. model for Example 2.2 (126 nodes, 100 

elements and 100 time steps)
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Table 2.4 the comparison of running time of CPU 
between F.E.A. and F.D.

F.E.A. F.D.
CPU Time 75 5

8 - 

7 - 6 - 
5 -
4 - - 
3 - 
2 -

tooo s so o CM <0 CO CMoo
t h l e k n e «

Figure 2.10 The comparison of temperature distribution
between F.E.A. and F.D.
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Table 2.3 The comparison of temperature distribution
between F.E.A. and F.D.

thickness F.D. F.E.A.
0 9.2623 9.25

0.01 7.3997 7.39
0.02 5.8079 5.8
0.03 4.4745 4.46
0.04 3.3805 3 .37
0.05 2.5011 2.49
0.06 1.8077 1.8
0.07 1.2699 1.27
0.08 0.857 0.86
0.09 0.5397 0.552
0.1 0.2886 0.316
0.11 0.2726 0.267
0.12 0.2566 0.226
0.13 0.2274 0.192
0.14 0.1887 0.163
0.15 0.1521 0.14
0.16 0.1255 0.122
0.17 0.0988 0.108
0.18 0.0634 0.0984
0.19 0.0252 0.0928
0.2 0 0.0909

The two-Dimensional Problem 
For the case where the heat input is applied only at a 

portion of the upper surface of the beam, the surface of 
control volume is no longer one dimensional (planar) . It is
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assumed that all the points at the surface of the same 
control volume have the same heat penetration time. Since 
the heat flows radically from the position of heat input, 
the shape of control volume for the single material beam, 
shown in figure 2.11, is therefore cylindrical.

The surface area and volume of control volume have to 
be consider in two parts: left-hand-side and right-hand-side 
of heat input due the probability of non-symmetry in the 
shape with respect to the heat input. At each boundary, 
there are four different types of control volumes that need
different approaches to obtain their surface areas and
volumes. The four types of control volumes are shown in 
figure 2.12.

For type 1 (shown in Figure 2.12(a)):
Ttrarc_ a b = —  (2 .17)2

n r 2
a r e a _ o a b  = --- (2.18)4
For type 2 (shown in figure 2.12(b)):

a r c _  a b = (—  - 0a)r (2 .19)2
  _ sin (20a) + K -  20a _2area o c a b — ----------- r (2.20)4
where 0a : the angle between line_oc and line_oa
For type 3 (shown in figure 2.12(c)):
arc_ a b  = Qbr (2.21)

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



www.manaraa.com

24

heat input Control
Volume

Heat flow

Figure 2.11 The control volumes for single material beam

a r e a _  o a b c = sin (20d) + 20b (2 .22)
where 0b : the angle between line_oa and line_ob
For type 4 (shown in figure 2.12(d)):
arc_ ab = (0b - 0a)r (2.23)
where 0a : the angle between line_oc and line_oa 
where 0b : the angle between line_oc and line_ob

area_ o c a b d = sin (20a) + sin (20b) +  2 (0b 0 a )  2 r (2.24)
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Ah

Ll
(a)

AhLl-
(b)

o c

-Ll
(c)

c
Ll-
(d)

Figure 2.12 Four different types of C.V. 
in the single material case

The same procedures is repeated for the other side of 
the beam. The surface area and volume of each control 
volume is the superposition of L.H.S. and R.H.S. The heat 
density (HD) of each layer is also determined in the same 
way.

HDk = pcVkAh (2.25)
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Since the heat penetration time at any point on the 
surface of each control volume is the same, it is assumed 
that the heat flow is always perpendicular to the surface of 
control volume. Therefore this two-dimensional-shape heat 
transfer problem can be simplified to the one dimensional 
heat transfer case. The temperatures of the control volumes 
are obtained by using the same finite difference equations 
(2.14),(2.15) and (2.16).

For the composite beam, the surface of the control 
volume still remains cylindrical in the first material part. 
However, due to the theory of heat penetration distance, the 
surface of control volume in the rest of materials is no 
longer cylindrical. An illustration of the profile of the 
control volume for the two-material composite beam is shown 
in figure 2.13. The surface of the control volume in the 
second material can be determined by the heat penetration 
distance.

Due to the theory of heat penetration distance, the 
ratio between r2 and R-r! is equal to the square root of 
ratio between thermal diffusivities of material 2 and 1.

(2.26)

(2.27)
Where Pi: thermal diffusivity of material 1 
Where p2: thermal diffusivity of material 2
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control
volume

heat inputa' a
d'

Figure 2.13 The control volume for 
two-material composite beam

It is more convenient to represent the profile of the 
surface in a cylindrical coordinate system. The point on 

the profile can be noted as (r,0) . By combining equations
(2.28) and (2.29), the profile equation is obtained in 
equation (2.30) .

r 2 = hi esc (0)) (2 .28)
r  = n  + n

12 IBs (2.29)

r  ■ $ 8 + 11 - $ )r' 

r  = s R ~ a ~ l/f)iu csc(0)
r  = P -  Q csc(0) (2.30)
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where

p = - f *

o - a - $ m

Technically, if the end points of the profile are 
known, then the surface area and volume of control volume 
are determined by integrating equation (2.30). The area and 
length integration are shown in equations (2.31) and (2.32). 
There are still some details that should be discussed. 
There are four different combinations of end points for the 
profiles shown in figure 2.14 for the left-hand-side 
boundary. In each combination, the end points of the 
profile will define the values of the volume and area of 
each control volume.

P
areafa, P) = J (P - Q esc (0) )2d0

= P2(P -  a) -  2PQ[ln(
CSC (P) - cot (P)
csc (a) - cot (a)

) ] - 02(cot (P) - cot (a))

(2.31)
P

c u rvd ff ., P) = f (P - Q esc (0) )d8
i (2.32)

= P(P - a) + Q ln(|csc (P) - cot (a)|)

For type a, the profile(curve from point a to point 
b) shown in figure 2.14a is complete. For type b, shown in 

figure 2.14b, the left end point(point a) of the profile is
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on the left boundary of the beam and the lowest point (point 
b) of the profile is above the bottom surface of the beam.

0

b

•Ll Ll
(b)

Ll
(c)

0

c

(d)

Figure 2.14 The profiles of the control volumes for 
difference boundary effect

For type c, shown in figure 2.14c, the left end 
point (point a) of the profile is on the common surface of 
the two materials and the lowest point of the profile is 
below the bottom surface of the beam. Therefore, the right 
end point of the profile (point b) is on the bottom surface 
of the beam. For type d, shown in figure 2.14d, the left
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end point (point a) of the profile is on the left boundary of 
the beam. The right end point of the profile (point b) is on 
the bottom surface of the beam. After calculating the end 
points for each type, the area and volume for each control 
volume are determined by utilizing equations (2.31) and
(2.32) .

After defining the area and volume of each control 
volume, the heat density (HD) for each control volume is 
calculated in the same way. By using the same finite
difference equations (2.14), (2.15) and (2.16), the
temperature field of the beam under thermal loading is 
computed. The procedure is as given below:

1. Input the position of heat source: The beam is 
divided into two parts (left-hand-side(LHS) and 
right-hand-side(RHS)) to calculate the surface area 
and volume of each control volume.

2. Input the layer(control volume) thickness in the 
first material

3. Calculate the surface area and volume of each layer 
of material 1 for the left hand side of the beam.

4. Calculate the surface area and volume of each layer 
of material 2 for the left hand side of the beam.

5. Repeat (3) and (4) for right hand side of the beam.
6. Superimpose the results from the L.H.S. and R.H.S. 

of the beam.
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7. Update the current time and heat penetration 
distance.

8. Update and solve the finite difference equations.
9. Repeat (7) to (8) until heating time is over.
For a beam that is composed of more than two 

materials, the procedure is essentially the same.

Illustrated examples 

Example 2.3
In this example, a homogeneous structure is subjected

to the heat input at a point on the top surface of the beam.
The configuration of the beam and heat input location is
shown in figure 2.15a. The finite element model is shown in
figure 2.15b. The results are compared with the finite
element method in figure 2.16 and table 2.5 to illustrate
the accuracy and efficiency of the two methods.

The material of the structure: Steel
The heat input: Qin=10 Watt for 60 sec
The dimension of the structure:
L=0.2 m 
Ll=0.1 m 
h=0.1 m 
b=0.01 m
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(a)

(b)
Figure 2.15 (a) The configuration of the beam and 

heat input for example 2.3 (b) The F.E.A. model for example 
2.3(231 nodes, 200 elements and 100 time steps)
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o ' o’ o  o

s §r-~oooo' o
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Figure 2.16 The comparison between F.E.A. and F.D. for 
the temperature distribution through the thickness 

below the location of the heat input

Table 2 .5 The comparison between F . E . A . and F.D. 
for the CPU running time

F.E.A. F.D.
CPU Time 125 6

Example 2.4
In this example, a composite beam is subjected to heat 

input at a point on the top surface of the beam. The

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



www.manaraa.com

3 4

configuration of the beam and heat input location is shown 
in figure 2.17a. The finite element model with initial 
condition is shown in figure 2.17b. The results are 
compared with the finite element method to illustrate the 
accuracy and computational efficiency of the proposed 
method.

The heat input: Qin=10 Watt for 120 sec
The dimension of the structure:
L=0.2 m 
Ll=0.1 m 
hi=0.1 m 
h2=0.1 m 
b=0.01

Q inLl

Steel

Aluminium

(a)
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Steel
Aluminium

(b)
Figure 2.17(a) The configuration of the beam and heat input 
for Ex. 2.4 (b) The F.E.A. model for example 2.4 (441 nodes, 

400 elements and 100 time steps)
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—■— F.E.A.

Figure 2.18 The comparison between F.E.A. and F.D. 
for the temperature distribution through the thickness the 

below location of the heat input
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Table 2.6 The comparison between F.E.A. and F.D. 
for the CPU running time

F.E.A. F.D.
CPU Time 273 6

300

250

200 -

§ 150 -

100 -

50 -■

0.08 0.06 0.04 0.02 •0.02 -0.04 -0.06 -0.080.1 0 -0.1

X(at Y=0.)

-♦— F.D. 
-m—  F.E.A.

Figure 2.19 The comparison between F.E.A. and F.D. 
for the temperature on the top surface
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Three-Dimensional Problems
If the heat input is on a portion of the top surface of 

a plate, the shape of control volume is now expanded into 
three-dimensional space. The surface area and volume of each 
control volume of the structure are defined by the principle 
of heat penetration distance as in the case of the one or 
two dimensional problems. Although the computation becomes 
more complex in three dimensional problems, the approach is 
very similar to two dimensional problems.

Two examples are considered for illustration. One is a 
single-material plate and the other is a composite plate. 
Both examples are subjected to heat input on the top 
surfaces of the plate.

Illustrate examples 

Example 2.5
In this example, a homogeneous square plate is 

subjected to heat input at the center of the top surface of 
the plate. The plate configuration is as shown in figure 
2.20a. The finite element model is shown in figure 2.20b. 
Because of the symmetry of the geometry, loading, and 
boundary conditions of this problem, only one quarter of the 
structure is used for the F.E.A. model. Its result is 
compared with finite the element method in figure 2.21 and
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table 2.7 to illustrate the accuracy and computational
efficiency of the proposed method.

The dimension of the plate:
Li=0.2 m 
L2=0 .2 m 
Lii=Li2i=0 .1 m 
h=0.1 m

L n

L21
Qiir

L2
Steel

Li
(a)

Qin.

(b)
Figure 2 . 2 0  (a) The plate configuration and 

heat input Q i n= 1 0  Watt (b) F.E.A. model for example 2 . 5  
( 1 3 3 1  nodes, 1 0 0 0  elements and 5 0  time steps)
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Table 2.7 The comparison between F.E.A. and F.D. 
for the CPU running time

F.E.A. F.D.
CPU Time 584 6

140

120

100

80 ■

60 -■

40

20 ■■

<J>oo 00O
ThickneM

— F.EA 
-•-F.D.

Figure 2.21 The comparison between F.E.A. and F.D. 
for the temperature distribution through the thickness 

below the location of the heat input

Example 2.6
In this case, a composite square plate is subjected to 

heat input at the center of the top surface of the plate. 
The plate configuration is shown in figure 2.22a. The 
finite element model is shown in figure 2.22b. The result 
is compared with the finite element method to illustrate the 
accuracy and computational efficiency of the proposed 
method.
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Lll
L21

L2Steel
Aluminium

hi Li
(a)

Steel

(b)
Figure 2.22 (a) The plate configuration and heat input of 

example 2.6 (Ln=L2i=0.1, Li=L2=0.2, hi=ti2=0.1, Qin=i0 Watt) (b) 
F.E.A. model for example 2.6(2531 nodes, 2000 elements and

30 time steps)
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Table 2.8 The comparison between F.E.A. and F.D. 
for the CPU running time

F.E.A. F.D.
CPU Time 824 7

140

120 -

100

80 -a F.E. A. 
F.D.

60 -

4 0 -

20 •

o CM s CM CO CM
©O o o o o

Figure 2.23 The comparison between F.E.A. and F.D. 
for the temperature distribution through 
the thickness at the center of the beam
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CHAPTER 3
THERMAL DEFLECTION AND STRESS DISTRIBUTION 

The General Concept

When a structure is heated above the ambient 
temperature, it will expand. Due to the heat input into the 
structure, the thermal loading(temperature field) will cause 
deflection as well. The procedure of obtaining the 
temperature field of the structure is discussed in chapter
2. In this chapter, the main goal is to obtain the thermal 
deflection and stress by assuming that the temperature field 
in the structure is known.

The purpose of this study is to develop a new method to 
obtain the deflection of the structure under thermal 
loading. In the proposed method, the thermal loading of the 
structure is transformed to an equivalent mechanical loading 
that can produce exactly the same deflection as the thermal 
loading. The details of how to transform the thermal 
loading (temperature field) to an equivalent mechanical 
loading will be discussed later in this chapter.

After obtaining the equivalent mechanical loading of 
the structure, the deflection due to the equivalent 
mechanical loading is evaluated by utilizing the energy 
method with Lagrange multipliers. The application of the

42
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energy method with Lagrange multipliers in structural 
analysis is presented in references[23,24,25,26]. The 
traditional energy method ,such as Rayleigh-Ritz method, is 
generally limited to the simplest problems where all the 
boundary conditions can be satisfied by the assumed 
deflection function. Through the use of Lagrange
multipliers, the problems with complex boundary conditions 
can be solved.

In this method, the potential energy function is 
obtained by assuming a deflection function composed of a set 
of coordinate functions G>n with unknown coefficients. The 
Lagrange multipliers are then utilized to insure the 
satisfaction of any boundary conditions which are not 
satisfied by the assumed deflection function. The unknown 
coefficients of the assumed deflection function can be 
determined by minimizing the Lagrangian function which 
includes the potential energy and the constraints.

The One-Dimensional (Beam) Problem
A beam is first considered for illustrating the 

proposed method. For example, a multiple material beam as 
shown in figure 3.1 is assumed to be subjected to a 
temperature distribution through the thickness as a result 
of thermal loading. Assuming that the cross section of the 
beam remains plane, the neutral axis of the beam can be 
determined by geometric consideration as follows:
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h,
h,

y.
y,

h.

Neutral
Axis

J ■
Figure 3.1 The cross section of the composite beam

The i-layer of the beam has a thickness hi. The yi-i 
and yi are the distances from the neutral axis to the top 
surface and the lower surface of i-layer. The yi can be 
expressed as:

i- i
y i = yo + hi for j=l to n (3.1)

i= i
Therefore, for any layer in the beam, the distances of 

the top and lower surfaces are functions of the distance 
from the neutral axis to the top surface of the first
layer(yo) . Since the first moment calculated about the
neutral axis is zero, the y0 is calculated by using equation 
(3.2). The position of N.A. can be therefore determined 
from:

n y»
J ^ E i JydA = 0 (3.2)

y»-i
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The total flexural rigidity D can be obtained as the 
sum of the rigidities of the different layers with respect 
to the neutral axis(N.A.).

The longitudinal thermal expansion of the beam aT will 
generally cause uniform expansion as well as bending. Since 
the beam is free to expand in the x-direction and there is 
no other mechanical loading other than the thermal loading, 
the resultant stress is the superposition of the thermal 

stress (at), uniform stress (<JaVe) and bending stress (am) . 
In order to satisfy the equilibrium conditions, the total 
force due to the stress distribution in x-direction has to 
be zero and the total moment about the neutral axis should 
be also zero.

Therefore, for the single material beam with depth h:

n * 
D =  £  E d *

k = 1
(3.3)

where /** = ^ ^ -+ bh td t2

dt =  yk-i — hk
2

Gi — —0 LET

Gave = jctETdy (3.4)

jctETydy

where: E : Young's Modulus
a : Thermal expansion coefficient 
T : Temperature rise value at any point 

through the thickness of the beam
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Similarly for the composite(n-layers) beam:
For layer i:
O l ( i )  —  ~ 0 liEiT (3.5)

Ei n e Gaveli) — “ --------- ^  J CHjEjTdy
2  h j E j  i = 1  w - 1

(3.6)

(3.7)

The resultant stress for any layer of the beam can be 
calculated as:

The deflection of the beam is the superposition of 
uniform expansion and pure bending. The uniform expansion 

is caused by <jaVe and pure bending is caused by am. Assuming 
that the length of the beam is much greater than the beam's 
total thickness, the effect of the uniform expansion on 
deflection can be ignored. Therefore the deflection of the 
beam with thermal loading can be simulated as the deflection 
of the beam with an equivalent thermal moment Mt through the 
length of the beam. This equivalent moment, shown in 
Equation (3.9), is the total moment caused by the bending 

stress(CTm) about the neutral axis. The deflection of the 
beam with T(x,y) can be simulated as loading with an 
equivalent moment Mc(x) acting on the beam.

G —G/+Gm«+G»i (3.8)
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n Y)
Mtfr) = £  Jb J OLjEjTOc, y)ydy (3.9)i=1 yt-i

Where b: the width of the beam
If the temperature distribution T is dependent on y 

only, the Mt is constant along the length of the beam. If 
the T is a function of x(the length of the beam) and y(the 
thickness of the beam), the equivalent thermal moment Mt is 
function of x.

For the beam case, the potential energy is the sum of 
strain energy and the work done by loading. The strain 
energy can be expressed as function of deflection (v) as 
given in equation (3.10). The work done by external force 
or moment also can be presented as a function of deflection. 
Therefore, the potential energy is a function of deflection. 
The deflection of the beam v(x) is assumed to be a linear 
combination of a set of prescribed coordinate functions 

<I»n(x) as in equation (3.11).

U = f ̂ (v")2dx (3.10)i 2
N

V  =  A i< P n (x) ( 3 . 1 1 )
n = l

where A„ are unknown parameters
From the previous discussion, the thermal loading 

T(x,y) can be transformed to an equivalent moment Mt (x) .
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The work done by the thermal loading can be expressed as 
follows:

i
w = J Mt(v")dx (3 .12)

o
If the beam is subject to the constraints:
GKAi, Ai, —  , M  = 0 j=l,2,...,Ic (3.13)
By using the constraints with Lagrange Multipliers, the 

Lagrangian function(L) can be written as follows:
Ic

L = U - w + £  XiGi (3 .14)
i= i

By minimizing the Lagrangian function as shown in 
equations (3.15) and (3.16), the unknown parameters(An, 
n=l...N) can be readily evaluated. The deflection of the 
beam is therefore determined by substituting these 
parameters in equation (3.11).

dL
dAn
dL
dXj

= 0 for n=l,2,...,N (3.15)

= 0 for j=l,2,.., Ic (3.16)

The procedure of the proposed method is summarized as 
below:

1. Input material properties and solve for the 
position of N.A. and the flexural rigidity D

2. Input the thermal loading(temperature field)
3. Transfer the thermal loading to the equivalent 

mechanical loading
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4. Assume the series of deflection function
5. Calculate the potential energy
6. Add any unsatisfied boundary conditions with 

Lagrange multipliers to the equation of potential 
energy to form the Lagrangian function

7. Develop and solve the set of linear equations 
obtained by partial derivatives of the Lagrangian 
function with respect to the unknown coefficients 
and the Lagrange Multipliers.

8. Substitute back the unknown coefficients and the 
deflection is determined

Illustrated examples

In order to illustrate the accuracy and the 
computational efficiency of the proposed method, the results 
from the proposed method are compared with the results from 
the finite element method for all the considered examples.

Examples 3-1 to 3-3 are for single material beams 
subjected to three different sets of boundary conditions. 
Examples 3-4 to 3-6 are two-material composite beams 
subjected to the same sets of boundary conditions as 
examples 3-1 to 3-3. Examples 3-7 to 3-9 are two-material 
composite beams symmetrically structured and also subjected 
to the same sets of boundary conditions as examples 3-1 to 
3-3 .

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



www.manaraa.com

50

The temperature loading for these nine cases are 
assumed to be the same. The temperature difference between 
top and bottom surfaces is 120° and the temperature 
distribution through the thickness of the beam is assumed to 
be linear. In all examples, the length and deflection units 
are in meters and the temperature units are in °C.

Example 3.1

T
h=2
j L

L=20 b=l

Figure 3.2 The configuration of the beam subjected to 
thermal loading in example 3 .1

For the homogeneous beam shown in figure 3.2, the 
boundary conditions are zero deflection at both ends and at 
the middle of the beam. Since sine functions already 
satisfy these boundary conditions at both ends, only one 
constraint for the middle point is necessary for this case. 
The assumed deflection function(sine series) is given in 
equation (3.17). The potential energy of the beam can be 
expressed by equation (3.18) as derived from the assumed 
deflection function. The boundary conditions of the beam can 
be considered as constraints at discrete locations as shown 
in equation (3.19). The equilibrium of the beam is satisfied
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when the beam has minimum potential energy. By using the 
method of Lagrange multipliers, the Lagrangian function is 
represented as equation (3.20). The partial derivatives with

respect to A^ and A.j equal zero become a set of linear 
equations((3.21) and (3.22)). The unknown coefficients(AjJ
of the finite series are obtained by solving these 
equations. The process can be repeated with expansion of 
the series until the solution converges with satisfactory 
accuracy.

v = ^Aisin( )) ( 3 . 1 7 )
n = l  L

rL . .mix . ,m nxs nSince sm( )sin( ) = 0 for m * n
Jo L L

Therefore
f (v")2dx = [ (Y (rm)2An sin(^^) )(V (roc)2A n  sin(^^))

Jo J°  n = 1 L  n = l  L

f (v")2dx  =  V  [ 11*11*An2 s i n 2( ^ ^ ) )Jo „=iJo L

J V " ) !d x  =  £ A.1Jo a=i 4L3

The potential energy n in this beam:
Ua -  W = —  f (v")2dx - f Mc(v")dx 

2 Jo J
w _ a (3.18)

= X  (—  n*K ~ 2 X  McimAn
n = 1,2,3... ^  n = l J J . . .

The constraint:

v’ . ,-nTCx, „ .G = £  A n sin (---) = 0 ( 3 . 1 9 )
n = 1 &
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The Lagrangian function is : 
L = U -  w + \G  

dL
dAi
dL
BX

= 0 

= 0

for i=l to n

(3.20)

(3.21)

(3.22)
The temperature distribution T(y) is as follow:

(3.23)T(y) = 120(1 - --- 1}))

The model for the finite element analysis used for 
comparison is shown in figure 3.3. Since the boundary 
conditions and the thermal loading are symmetrical about the 
center location, this model only contains half of the beam 
with 55 nodes and 40 elements.

— —
t>
>
t>
IVP.--------------------- 1 0  ----------------------- 4

Figure 3.3 The F.E.A. model for example 3.1

The results of the proposal method for different number 
of terms N are shown in figure 3.4. The assumed deflection 
function converge at N=7. The comparison between the 
proposed method and the F.E.A. is shown in figure 3.5. The 
difference in the maximum deflection(x=16.) is about 9%. 
The CPU time for calculating deflection by the F.E.A. is 9
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sec. The proposed method gives the solution in less than 1 
sec.

The results illustrate that the proposed method is much 
faster than the F.E.A. and the two methods give very close 
deflection values.

N=30.003
0.0025
0.002

0.0015
0.001

0.0005

5 2010 15
Figure 3.4 the computed deflections for N=3,5,7,9

0.003
F.E.A.0.0025

—  N=70.002

0.0015
0.001

0.0005

5 10 15 20
Figure 3.5 Deflections by the proposed method(N=7)

and the F.E.A.
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Example 3.2
Consider a clamped-supported homogeneous beam as shown 

in figure 3.6 subjected to the same temperature distribution 
T(x,y) given in equation (3.23).

L=20 b=l
I

. 7 7h=2

Figure 3.6 The configuration of the beam in example 3.2

By choosing the same deflection function, the 
formulation of the total potential energy is the same as 
that in example 3-1. The boundary conditions, however, are 
not all satisfied by this function. The unsatisfied 
boundary condition is v'=0 at x=0, which can be written as:

n
G = ^  Anil — 0 (3.24)

n = l

The same procedure as in example 3-1 is applied to 

solve for the An and X. The model of the finite element 
analysis used for comparison is shown in Figure 3.7. Since 
the boundary conditions and the thermal loading are not 
symmetrical in x direction, this model contains the full 
configuration of the beam with 105 nodes and 80 elements.
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202

Figure 3.7 The F.E.A. model for example 3.2

v

0.01

0.008
0.006
0.004
0.002 N=5

5 1510 20

Figure 3.8 the computed deflections for N=5,10,20

The results from the proposed method for different 
terms N are shown in Figure 3.8. The assumed deflection 
function converges at N=10. The comparison between the 
proposed method and the F.E.A. is shown in figure 3.9. The 
difference in the maximum deflection(x=14) is approximately
0.88%. The CPU time for calculating deflection by the 
F.E.A. is 11 sec. The proposed method requires less than 1 
sec.
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Again, the results illustrate that the proposed method 
is much faster than the F.E.A. and that the two methods give 
almost identical results.

0.01

0.008
0.006

F.E.A.
0.004 N=10
0.002

20
Figure 3.9 Deflections by the proposed method(N=10)

and the F.E.A.

Example 3.3
Under certain conditions, for example a homogeneous 

cantilever beam, it is necessary to use a more complete 
Fourier series, such as a series including both sine and 
cosine functions. The nature of the sine functions alone 
makes it difficult to provide a deflection at the free end.

Assuming that the deflection is a complete Fourier 
series as follows:
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v 1 • nTUc ■A . nKx  . , _ . rv  = Ao + An cos (---) + 2,B»sm(---)) (3.25)n-l £ n«l ^
The strain energy stored in the beam for this assumed 

deflection is:

Eln* (vr 2 2U = — —  \ Y  (An2 + Bn2) +4L3 { £ [
w m 4n2m 3 ^  -26)Y  Y  {.AnBn — ;--- :- (COS (mt) COS (iMJC)-l)}}n=l *=1 to - m2)ic JJ

m*n

The work done by the equivalent moment Mt(x) is still
the same as equation (3.12). The boundary conditions are
y=0 and y'=0 at x=0, and y"=0 and y"' =0 at x=L, none of
which are satisfied by equation (3.25). The constraints are
thus:

w
Gi = Ao + £  An = 0 (3 .27)

fl = 1

n
Gi = £ n B n  = 0 ( 3 . 2 8 )n=l

N
Gi = ^  Ann2 cos(nTC) = 0 ( 3 . 2 9 )o = l 

w
G< = Ban3 co s  (rOT) = 0 ( 3 . 3 0 )

0 =  1
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The Lagrangian function L can be formulated as:
4

L = U -  w + £  XiGi (3 .31)
i —i

Equating the partial derivatives of the Lagrangian 

function with respect to parameters Xi (i=l,2,3,4) A0, An and 
Bn (n=l,2,...N) to zero, a set of (2N+5) linear equations 
with (2N+5) unknowns is obtained. Therefore all the unknown 
coefficients can be solved and the deflection function of 
the beam is determined.

The F.E.A. model used for comparison is the same as in 
example 3-1-2 except for the boundary conditions. The 
results from the proposed method for different number of 
coefficients N are shown in figure 3.10. The assumed 
deflection function converges at N=8. The comparison 
between the proposed method and the F.E.A. is shown in 
Figure 3.11. The difference in the maximum deflection(x=20) 
is approximately 1.48%. The CPU time for calculating 
deflection by the F.E.A. is 12 sec. The proposed method 
only requires less than 2 sec.

Again, the results illustrate that the proposed method 
is much faster than the F.E.A. and that the two methods give 
almost identical deflections values.
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-0 .0 2 5 N=6
- 0 .0 5

N=8,10-0 .0 7 5

- 0.1

-0 .1 2 5

- 0 .1 5

Figure 3.10 the computed deflections for N=6,8,10

-0 .025

-0 .0 5

-0 .075

- 0.1

F.E.A.-0 .125

N=10
-0 .1 5

Figure 3.11 Deflections by the proposed method (N=8)
and the F.E.A.
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Example 3.4

------------ L=30------------- b=l

hi=2 1
J

h2-£T

Figure 3.12 The configuration and boundary conditions of the
beam in example 3-4

N.A

Figure 3.13 The cross section of the beam in example 3-4

For a composite beam shown in figure 3.12, the 
temperature distribution of the beam is assumed to be

(y  +  Yo)T[y) = 120(1 - — -— -)) (3.32)

a y?
X  Ei jydA = 0

yh-i (3.33)yo + hi yo+Jn+to
J  EiydA + J  EiydA = 0
yo yt + hi

where hi : the thickness of material 1 (Steel)
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h2 : the thickness of material 2 (Aluminum)
Ei : the Modulus of material 1
E2 : the Modulus of material 2

The position of the N.A. (Yo) shown in figure 3.13 is
calculated by using equation (3.33). The flexural rigidity 
D is calculated as follows:

u  3 t_ l  3 t ,

D = Jb(Ei(— — + 2n(—  + yo)2] + HE2{ + h2(hi + —  + yo)2] ]12 2 12 2
where b: width of the beam (3.34)
The equivalent moment Mt(x) is obtained as follow:

yo+hi yo + fti + Jn
Mt(x) = J EiCLiTtx, y ) y d y + J EncciT(x, y ) y d y  (3.35)

yo yo+Jn

The work done the equivalent moment Mt(x) is:
L

w = J M tv"dx (3.36)
o

The potential energy n in this beam and the constraint
are the same as equation (3.18) and (3.19). The Lagrangian
function L is also the same as equation (3.20). By the same 
procedure as equation (3.21) and (3.22), the deflection 
function of the beam is determined.

The F.E.A. model used for comparison is shown in figure
3.14. Because of the symmetrical geometry and boundary
conditions, this model only considers half of the beam that 
contains 77 nodes and 60 elements. The results from the 
proposed method for different number of terms N are shown in 
Figure 3.15. The assumed deflection function converges at
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N=7. The comparison between the results from the proposed 
method and the F.E.A. is shown in Figure 3.16. The 
difference in the maximum deflection (x=26) is approximately 
3.10%. The stress distributions through the thickness from 
the F.E.A. and the proposed method are shown in figure 3.17. 
The shear stress at the interface surface of the two 
materials as obtained by the proposed method is 37.28 MPa. 
The CPU time for calculating the deflection by the F.E.A. is 
12 sec. The proposed method requires less than 2 sec.

The results illustrate that the proposed method is much 
faster than the F.E.A. and that the two methods give very 
close deflection values.

>r
t>-
>->-»-

Figure 3.14 The F.E.A. model for example 3.4
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N=30 . 0 0 4

N=5,7,9
0.003

0.002

0.001

5 10 15 20 25 30

Figure 3.15 the computed deflections for N=3,5,7,9

0.004

F.E.A.0.003

N=7
0.002

0.001

5 10 15 20 25 30

Figure 3.16 Deflections by the proposed method(N=7)
and the F.E.A.
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1.5 10

-1 -0.5 0.5-5. 10
The shear 
stress= 
37.28 Mpa

-1. 10
-1.5 10
-2 . 10

• F.E.A
  The proposed method

Figure 3.17 Stress through the thickness of the beam

Example 3.5
Consider a clamped-supported composite beam as shown in 

Figure 3.18 subjected to the temperature distribution T(x,y) 
as shown in equation (3.23). This composite beam is the 
same as the beam in example 3.4.

l-m T “^0 m

A

Figure 3.18 The configuration of the beam in example 3 .5
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Following the same procedure as in example 3.4, the Mt 
can be obtained. By choosing the same deflection function, 
the formulation of the total potential energy is the same as 
that in example 3.2. Since the boundary conditions are not 
all satisfied, the unsatisfied boundary condition (v'=0 at 
x=0) can be written as:

N

G = Anil = 0
n = l

The same procedure as in example 3.2 is applied to 

solve for the An and A.. The F.E.A. model used for comparison 
is shown in Figure 3.19. Since the boundary conditions and 
the thermal loading are not symmetrical in the x direction. 
This model contains the full configuration of the beam with 
147 nodes and 120 elements.

I

Figure 3.19 The F.E.A. model for example 3.5
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The results from the proposed method for different 
number of term N are shown in figure 3.20. The assumed 
deflection function converges at N=10. The comparison 
between the proposed method and the F.E.A. is shown in 
Figure 3.21. The difference in the maximum deflection(x=20) 
is approximately 1.69%. Since the temperature loading is 
the same as in example 3.4, the stress distribution through 
the thickness of the beam and slip stress is the same as 
that in example 3-4. The CPU time for calculating 
deflection by the F.E.A. is 11 sec. The proposal method 
requires less than 1 sec.

0 .014

0.012
0.01

0.008
N=20
N=100.006

0.004 N=5
0.002

5 20 2510 15 30

Figure 3.20 the computed deflections for N=5,10,20
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0.015
0.0125
0.01

0.0075
0.005 . F.E.A.

 N=100.0025

20 25 30
Figure 3.21 Deflections by the proposed method(N=10)

and the F.E.A.

Again, the results illustrate that the proposed method 
is much faster than the F.E.A. and that the two methods give 
almost identical deflection values.

Example 3.6
In this example, we consider a composite beam with the 

same boundary condition as in example 3.3 and the same 
configuration of the beam as in example 3.4. The beam in 
this case is shown in figure 3.22.
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L--------- r . m

Figure 3.22 The configuration of the beam in example 3-6

Following the same procedure as in examples 3.3 and 
3.4, the deflection is obtained. The F.E.A. model used is 
the same as in example 3.5 with different boundary 
conditions. The results from the proposal method for 
different number of terms N are shown in figure 3.23. The 
assumed deflection function converges at N=8. The
comparison between the proposed method and the F.E.A. is 
shown in Figure 3.24. The difference in the maximum 
deflection(x=30) is approximately 3.09%. The CPU time for 
calculating deflection by the F.E.A. is 12 sec. The 
proposed method requires less than 2 sec.

Again, the results illustrate that the proposed method 
is much faster than the F.E.A. and those two methods give 
almost identical deflection values
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N=6-0.05

- 0.1
N=8,10

-0.15

- 0.2

Figure 3.23 the computed deflections for N=4,6,8

30
-0.05

- 0.1

F.E.A.-0.15
  N=8

- 0.2

Figure 3.24 Deflections by the proposed method(N=8)
and the F.E.A.
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Example 3.7

- - - - - - - - -  L=30 - - - - - - - - - r~hi=lj- h2=l
t , 11

Figure 3.25 the configuration and boundary conditions of the
beam in example 3.7

For the composite beam shown in figure 3.25 and a 
temperature distribution as given by equation (3.37):

T(y) = 120(1 - — ~ ) (3.37)3
n y?
£  Ei J yd A  = 0

yh-i (3 38)yo+Jn yo+hi+ha yo+hi + tu+hiJ E iydA + J EiydA + J E iydA = 0
yo yo+hi yo + hi + ha

where hi : the thickness of first layer (Steel)
h2 : the thickness of second layer (Aluminum) 
h3 : the thickness of third layer(Steel)
Ei : the Modulus of material 1(Steel)
E2 : the Modulus of material 2 (Aluminum)

The position of N.A. (Y0) can be calculated by using 
equation (3.38). Since the beam is symmetrically
structured, the position of N.A. must be at the center of 
the thickness (Y0= (hi+h2+h3) 1 2 )  . The flexural rigidity D is 
calculated as follow:
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where b: width of the beam
The equivalent moment Mt(x) is obtained as follow:

yo + /u yo+/n + to yo + hi + te+Ju
Mt = | EiCtiTydy + J E M & y d y  + J EiCtiTydy (3.40)

yo yo+fci yo + hi + ha

The work done by the equivalent moment Mc(x) is:
L

w = J Mtv"cbc
0

The potential energy n of the beam and the constraints
are the same as given by equations (3.18) and (3.19). The
Lagrangian function L is also the same as expressed in
equation (3.20). Following the same procedure and using
equations (3.21) and (3.22), the deflection function of the
beam is determined.

>rt>
»■0>

Figure 3.26 The F.E.A. model for example 3.7
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The F.E.A. model used for comparison is shown in figure
3.26. This model contains 77 nodes and 60 elements. The
results from the proposed method for different number of 
terms N are shown in Figure 3.27. The assumed deflection 
function converges at N=7. The comparison between the 
proposed method and the F.E.A. is shown in Figure 3.28. The 
difference in the maximum deflection (x=27) is approximately 
6.38%. The stress distributions through the thickness
obtained by the F.E.A. and proposed method are shown in 
figure 3.29. The maximum shear stress at the interface
surface of the two materials as obtained from the proposed 
method is 67.2 Mpa. The CPU time for calculating deflection 
by the F.E.A. is 12 sec. The proposed method requires less 
than 2 sec.

0.004

0.003

0.002

0.001

5 10 15 20 25 30

Figure 3.27 the computed deflections for N=3,5,7,9
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•F.E.A.
—  N=70 .004

0.003

0.002

0.001

15 205 10 25 30

Figure 3.28 Deflections by the proposed method(N=7)
and the F.E.A.

The results illustrate that the proposed method is much 
faster than the F.E.A. and that the two methods give very 
close deflection values.

7 <7x

Thickness
-1 .5 1.5

F.E.A.Max. shear stress= ’’2" 10 
67.2 Mpa ■3. 10 The Porposed method

•4

-5 .  10

Figure 3.29 Stress through the thickness of the beam
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Example 3.8
Consider a clamped-supported composite beam as shown in 

figure 3.30 subjected to the temperature distribution T(x,y) 
as shown in equation (3.37). The composite beam in this 
case is the same as the beam of example 3-7.

L=30
hi=l

h3=l

Figure 3.30 The configuration of the beam in example 3.8

The same procedure as in examples 3.7 is followed to 
obtain Mt. By choosing the same deflection function, the 
formulation of the total potential energy is the same as 
that in example 3.2. Since the boundary conditions are not 
all satisfied, the unsatisfied boundary condition (v'=0 at 
x=0) can be written as:

N

G — ^  Anil = 0
n = 1

The same procedure as in example 3.2 is applied to 

solve for the An and X. The F.E.A. model used for comparison 
is shown in Figure 3.31. Since the boundary conditions and 
the thermal loading are not symmetrical in the x direction,
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this model contains the full configuration of the beam with 
147 nodes and 120 elements.

oe>
-1*.

Figure 3.31 The F.E.A. model for example 3.8

The results from the proposed method for different 
number of terms N are shown in Figure 3.32. The assumed 
deflection function converges at N=10. The comparison 
between the proposed method and the F.E.A. is shown in 
Figure 3.33. The difference in the maximum deflection(x=20) 
is approximately 1.05%. Since the temperature loading is 
the same as in example 3-7, the stress distribution through 
the thickness of the beam and shear stress is the same as 
that in example 3.7. The CPU time for calculating 
deflection by the F.E.A. is 11 sec. The proposed method 
requires less than 1 sec.
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0 . 0 1 7 5

0.015

0.0125

0.01
N=20

0.0075 N=10
0.005

N=5
0.0025

5 10 15 20 25 30

Figure 3.32 the computed deflections for N=5,10,20

Again, the results illustrate that the proposed method 
is much faster than the F.E.A. and that the two methods give 
almost identical deflection values.

0.015

0.0125

0.01
0.0075

0.005 F.E.A.
 N=100.0025

20 25 30

Figure 3.33 Deflections by the proposed method(N=10)
and the F.E.A.
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Example 3.9
In this example, the composite beam has the same 

boundary condition as in example 3.6 and the same 
configuration as in example 3.7. The beam in this case is 
shown in Figure 3.34.

“■ L—J U »
r-hi=l

j- h2=l

i

Figure 3.34 The configuration of the beam in example 3-9

Following the same procedure as in examples 3-6 and 3- 
7, the deflection is obtained. The F.E.A. model used is the 
same as in example 3.8 with a change in the boundary 
conditions. The results from the proposed method for 
different number of terms N are shown in figure 3.35. The 
assumed deflection function converges at N=8. The 
comparison between the proposed method and the F.E.A. is 
shown in Figure 3.36. The difference in the maximum 
deflection (x=30) is approximately 1.49%. The CPU time for 
calculating deflection by the F.E.A. is 12 sec. The 
proposed method requires less than 2 sec.
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20 25 30

-0 .0 5
=6

- 0.1

N=8,10
-0 .1 5

- 0.2

Figure 3.35 the computed deflections for N=4,6,8

Again, the results illustrate that the proposed method 
is much faster than the F.E.A. and that the two methods give 
almost identical deflection values

20 25 30

-0 .0 5

- 0.1

-0 .1 5
=8

- 0.2 F.E.A.

Figure 3.36 Deflections by the proposed method(N=10)
and the F.E.A.
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The Two-Dimensional (Plate) Problem

In this investigation, a plate is defined as an elastic 
body bounded by two flat surfaces. The distance between the 
surfaces is the thickness of the plate. The neutral surface 
(N.S.) is a plane parallel to the top and bottom surfaces. 
The position of the N.S. can be obtained in the same fashion 
as in the beam case. The development of the theory of 
bending of a thin plate is based on the following 
assumptions attributed to Kirchhoff[20]:

1. The linear filament of the plate which is initially 
normal to the N.S. remains straight and normal to 
N.S. after bending.

2. There is no deformation in the N.S.
3. Normal stress in the direction transverse to the 

N.S. is small compared to the other normal 
stresses, and the normal strain in that direction 
is small enough to be disregarded.

The position of N.S. for a composite plate shown in 
figure 3.37 is obtained by the same procedure as that used 
in the beam case. Therefore, the total flexural rigidity D 
of the composite plate is defined by equation (3.41). The 
strain energy U for a plate is formulated as equation
(3.42).
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D = £ EkIk
k  = i  1 - U* (3.41)

where Ik 

dkv
A*3 , , J 2
“j - j "  +  UkCik

1 .yjc - i A*2
Poisson's ratio

U 9 Ja /■

9V  92v , 9 V  92v 92v j, , . ( T T  + t -̂)2 - 2(1 (— f-)2] }dA2 ja 9 x 9 y 9 x 9 y  9 x d y

where v : deflection function
A : the surface area of the plate

(3.42)

Due to the effect of Poisson's ratio, the equivalent 
moment Mt is shown in equation (3.43) . The work done by the 
equivalent moment Mt is given in equation (3.44).

f

N.S.

Figure 3.37 The cross section of a composite plate

n **
Mt(x, y) = £  J (1 + i>i) (EiCti T(x, y ,  z)z)dz (3.43)

i = l  zi-i
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a v  a v
W  =  [ [ Md-r- + — T— )dxdy (3.44)

oo d x d y
The potential energy therefore can be written as

follows:
I I  = U - W (3 .45)
The boundary conditions at the edges of the plate can

be categorized as follows:

1. clamped edge along which v and 9v/3n vanish
2. simply-supported edge along which v and Mn vanish
3 . free edge along which and vn vanish
In the above statements, the derivative with respect to 

n is the derivative with respect to the normal to the edge, 
and Mq and vn denote, respectively, the moment and the shear 
force in the normal direction to the edges. The procedure of 
the proposed method is the same as in the beam case.

Illustrative examples

Seven examples are used with different boundary 
conditions in order to demonstrate the capability of the 
proposed method. Examples 3.10 to 3.14 are unit homogeneous 
square plate with dimension Lx=Ly=l. In example 3.14, a 
composite plate is considered in order to demonstrate both 
the shear stress and deflection. In examples 3.15 and 3.16, 
the homogeneous plates with holes are considered. In all
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examples, the length and deflection units are in meters and 
the temperature units are in °C.

In order to illustrate the accuracy and the
computational efficiency of the proposed method, it is 
compared with the finite element method for all the 
considered examples. The thermal loading for these seven 
cases is assumed to be the same. The temperature difference 
between top and bottom surfaces is 120° and the temperature 
distribution through the thickness of the beam is assumed to 
be linear.
Example 3.10

X

^  S.S.

s.s

3.S.

Figure 3.38 the configuration of the plate with boundary
conditions in example 3.10

The problem of a homogeneous plate with all edges 
simply supported has been cited by many authors (for example 
Timoshenko[20], Saada[27], and Love[28]) to demonstrate the
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usage of Rayleigh-Ritz method in plate problems. Taking a 
unit square homogeneous plate(thickness h=0.01) as an 
example, the assumed deflection function(v) is chosen to be 
a double sine series for both x and y direction.

tta Nn
vix, y ) = ^  ^  Am s i n  (mux) sin (mty)) (3.46)

a=1 n= l

To simplify the problem, Nm and Nn will be taken the 
same throughout this study. With the deflection surface 
approximated by the double sine series shown in equation
(3.46), the strain energy U which is obtained by equation
(3.42) is expressed as :

nr-4 mb

U = ---£  £  Am2{m2 + n2)2 (3.47)
8  o = l n = l

The temperature distribution T(z) is as follow:

T(z) = 120(1 - iZ + ^ )) (3.48)
h

The equivalent moment Mc and The work done by the 
equivalent moment Mc can be calculated from equations (3.43) 
and (3.44) .

120Da(l - M 2)
Mt(x, y )  = ----- ------ (3.49)

h

V 1 v’ , r„ (m2 + n2) (1 - cos {not)) (1 - cos (me) )W = > >-------------------------------------  (3.50)

Since the second derivative of a sine function vanishes 

at the edges of the plate, i.e. d2v / d x 2=0 at x=0 and x=l. and 

d2v / d y 2=0 at y=0 and y=l., all boundary conditions are
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satisfied by the assumed deflection function and no 
additional constraint equations are necessary. The
Lagrangian function L is equal to the potential energy 
function in this case.

Using the same approach as in the beam examples, the 
partial derivatives of L with respect to each A,™ are set 
equal to zero. The unknown coefficients are obtained 
as:

480a(l + u) (1 - cos (not)) (1 - cos m t ) )
Am = --------------- — ----------------  (3.51)

7i hmn

In view of the above equations, it can be seen that the 
numerical value of Anm diminishes very quickly as m and n 
increase.

s. s.

s.s. s.s.

s.s.

Figure 3.39 The F.E.A. model for example 3.10

The F.E.A. model used for comparison is shown in figure 
3.39. This model contains 882 nodes and 400 elements. The
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results from the proposed method for different number of 
terms N are shown in figure 3.40. Figure 3.41 shows the 
comparison between the F.E.A. model and the proposed method 
for the deflection curves taken along the section y=0.5. The 
assumed deflection function converges at N=7. The
difference in the maximum deflection (x=0.5) is 
approximately 0.56%. The deflection of the plate is shown in 
figure 3.42. The CPU time for calculating deflection by the 
F.E.A. is 167 sec. The proposed method requires less than 1 
sec.

N=7,11

0.014
0.012

N=30.01
0.008
0.006
0.004
0.002

0.60.4 0.80.2 1
Figure 3.40 the computed deflection function along the

section y=0.5
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V
0.014

0.012
0.01

0.008
F.E.A.

0.006

Proposed method0.004

0.002

0.80.6 10.2 0.4

Figure 3.41 the comparison between the F.E.A. model 
and the proposed method(N=7) for the deflection curves 

along the section y=0.5.

Example 3.11
As illustrated in the previous section, the proposed 

method makes it very convenient to convert one plate problem 
to another with different boundary conditions. It is also 
easy to change the boundary conditions of a plate problem 
without any major change in the formulation when using the 
proposed method. Consider a unit square homogeneous plate 
with three edges simply supported and the fourth edge 
clamped as shown in figure 3.43.
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X

s.s

lamped S.S.

S.S. y

Figure 3.43 the configuration of the plate with boundary
conditions in example 3.11

With the same assumed deflection function as equation
(3.46), the formulations of the strain energy and the work 
done by the equivalent moment will be the same as for 
example 3.10. Since the boundary conditions are not all 
satisfied by the assumed deflection function, the Lagrangian 
function L is not only potential energy. The unsatisfied 
boundary condition is that the slop at the fixed boundary 
must be zero.

Since it is extremely difficult to find a continuous 
function to force the slop to be zero along the entire edge
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x=0, the boundary conditions are only satisfied using 
Lagrange Multipliers at a finite number of points chosen 
along the edge x=0. The boundary conditions on the segments 
between these points are disregarded. In this example, the 
number of the point is chosen as 9 to provide enough 
accuracy for the deflection values.

The constraint equations are obtained as follow:
N AT

Gi(Am) = ^  ̂  Ann(mrc) sin (n7Cyi) =0 i=l to 9 (3.53)
JDsl ffl = l

where yi=i/10.
The Lagrangian function L is:

9
UAm,Xi) = U -  W + £  XiGi(Amn)) (3.54)

i=1
Equating the partial derivatives of L with respect to 

each Ann to zero and combining the result with equation 
(3.53), there are (N2+9) linear equations for (N2+9) 
unknown coefficients. The deflection function is therefore 
determined.

The F.E.A. model used for comparison is the same as in 
example 3.10 with a change in the boundary conditions. The 
results from the proposed method for different number of 
terms N are shown in figure 3.44. Figure 3.45 shows the 
comparison between the F.E.A. model and the proposed method 
for the deflection curves taken along the section y=0.5. 
The assumed deflection function converges at N=17. The 
difference in the maximum deflection (x=0.65) is
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approximately 0.90%. The deflection of the entire plate is 
shown in figure 3.46. The CPU time for calculating 
deflection by the F.E.A. is 156 sec. The proposed method 
requires less than 3 sec.

v
N=130.008

0.006

0.004
N=17,21

0.002

x0.2 0.6 0.80.4 1

Figure 3.44 the computed deflection function along
the section y=0.5
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V

0.008

0.006

0.004
Proposed method

0.002
F.E.A.

X0.2 0.4 0.6 0 . 8 1
Figure 3.45 the comparison between the F.E.A. model and 

proposed method(N=17) for the deflection curves along the
section y=0.5.

Example 3.12
In this example, the boundary conditions of the unit 

square homogeneous plate are 2 simply supported edges along 
x=0 and y=0 and two clamped edges along x=l and y=l. The 
formulations of the strain energy U and the work done by the 
equivalent moment will be the same as in previous example. 
The constraint equations are obtained as follow:
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Gi(Am) = X  Am{im) s in ia n y i ) =0, 1=1 to 9 (3.55a)
m=l m=l 

N W
Gj[Am) = X  X  Aan(fl7t) sin(n7txy - s) =0, j=10 to 18 (3.55b)

m=l m=l

where Xi=(i/10), yi=(i/10), i=l to 9 
The Lagrangian function L is:

18
UAnm. Xi) = U -  W + X  taGi(A«) ) (3.56)

i= l

X

♦

S.S.

Clamped

Figure 3.47 the configuration of the plate with boundary 
conditions in example 3-12

Equating the partial derivatives of L with respect to 
each Ann to zero and combining with equations (3.55a) and 
(3.55b), there are (N2+18) linear equations for (N2+18)
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unknown coefficients. The deflection is therefore
determined.

The F.E.A. model used for comparison is the same as in 
example 3.10 with a change in the boundary conditions. The 
results from the proposed method for different number of 
terms N are shown in figure 3.48. Figure 3.49 shows the 
comparison between the F.E.A. model and the proposed method 
for the deflection curves along the section y=0.5. The 
assumed deflection function converges at N=17. The 
difference in the maximum deflection (x=0.7) is 
approximately 0.9%. The deflection of the entire plate is 
shown in figure 3.50. The CPU time for calculating 
deflection by the F.E.A. is 156 sec. The proposed method 
requires less than 5 sec.

v
0.005 N=13
0.004

0.003

=17,210.002

0.001

0.2 0.4 0.6 0.8 1
Figure 3.48 the computed deflection function taken along

the section y=0.5
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0 . 0 0 5

0.004

0.003

Proposed method0.002

F.E.A.0.001

0.2 0.4 0.6 0.8 1

Figure 3.49 the comparison between the F.E.A. model 
and the proposed method (N=17) for the deflection curves

along the section y=0.5.

Example 3.13
In this example, the boundary conditions of the unit 

square homogeneous plate are 2 simply supported edges along 
x=0 and x=l and two clamped edges along y=0 and y=l. The 
formulations of the strain energy U and the work done by the 
equivalent moment will be the same as in the previous 
example. The constraint equations are obtained as follows:

Gi(Aaa) = ^  AmOrac) sin (nTiyi) =0, 1=1 to 9 (3.55a)
jn = l  n=l
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w w
Gj + i(Am) = ^  ̂  Am(nat) sin (mil) sin(n7Cyi) =0 (3 . 55b)

X

♦

Clampled

Figure 3.51 the configuration of the plate with the boundary
conditions in example 3.13

The Lagrangian function L is:
IB

UAm. Xi) = U -  W + £  hiGi(Am)) (3.56)
i=i

Equating the partial derivatives of L with respect to 
each Ann to zero and combining with equations (3.55a) and 
(3.55b), there are (N2+18) linear equations for (N2+18) 
unknown coefficients. The deflection function is therefore 
determined.
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The F.E.A. model used for comparison is the same as in 
example 3.10 with a change in the boundary conditions. The 
results from the proposed method for different number of 
terms N are shown in figure 3.52. Figure 3.53 shows the 
comparison between the F.E.A. model and the proposed method 
for the deflection curves along the section y=0.5. The 
assumed deflection function converges at N=17. The 
difference in the maximum deflection (x=0.5) is 
approximately 7%. The deflection of the entire plate is 
shown in figure 3.50. The CPU time for calculating 
deflection by the F.E.A. is 148 sec. The proposed method 
requires less than 5 sec.

v
0.003 N=13

0.0025

0.002

0.0015

=17,210.001

0.0005

0 .4 0.6 0.60.2 1

Figure 3.52 the computed deflection function taken along
the section y=0.5
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V
0.003

0.0025

0.002

0.0015

0.001 Proposed method
0.0005 F.E.A.

0.2 0 .4 0.6 0.0 1

Figure 3.53 the comparison between the F.E.A. model 
and the proposed method(N=17) for the deflection curves 

taken along the section y=0.5.

Example 3.14
In this example, a unit square composite plate with all 

edges simply supported is considered. The temperature of 
top surface of the plate is 120 degrees. The temperature of 
the bottom surface of the plate is zero. The temperature 
distribution through the thickness is assumed linear.

The neutral surface of the plate is obtained by using 
the same procedure in the beam problems. The total flexural 
rigidity D of the composite plate is therefore determined by 
equation (3.41).
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In this example, since the materials are symmetrical 
about N.S. The N.S. is the central surface throughout the 
plate.

X

Figure 3.55 The plate for example 3.14

1
Zo 

.  |

Steel hi

Aluminium

♦
Z

• n2

Steel h3

Figure 3.56 The cross section of the plate for example 3.14

The configuration and cross section of the plate are 
shown in figure 3.56 and the thermal loading for the plate
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is as in equation (3.57). The equivalent moment Mt can be 
determined by substituting in equation (3.43).

T(z) = 120(1 - -- —  ) (3.57)
h

M x . y ) = £  f —  'T(- y ' Z)Z dz (3.58)
i = l Zl-i ^

By assuming the deflection function to be the same as 
in the previous examples, given in equation (3.46), the 
strain energy U, the work done by the equivalent moment Mt 
and potential energy are therefore formulated as:

j-f-i Ms Ml
U = --- £  £  Asn2(m2 + n 2)2 (3.59)

^  m = l n = l

a v  a v
W = f I Mt{—  + r rr - )d x d y (3.60)

oo d x  d y
n = u - w
Since the second derivative of a sine function vanishes 

at the edges of the plate, i.e. a2v/ax2=0 at x=0 and x=l. and 

a2v/ay2=0 at y=0 and y=l., all boundary conditions are 
satisfied by the assumed deflection function and no 
additional constraints are necessary. The Lagrangian 
function L is equal to the potential energy function.

Using the same approach as in example 3.10, the partial 
derivatives of L with respect to each set equal to zero. 
The unknown A n n  coefficients are obtained as:
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480a(l + d ) (1 — cos (inn:) ) (1 - cos im) )
Ann — -------------------------------   ( 3 . 6 1 )

K him

The F.E.A. model used for comparison contains 484 nodes 
and 300 elements. The results from the proposed method for 
different number of terms N are shown in figure 3.57. 
Figure 3.58 shows the comparison between the F.E.A. model 
and the proposed method for the deflection curves along the 
section y=0.5. The assumed deflection function converges at 
N=7. The difference in the maximum deflection (x=0.5) is 
approximately 8.62%. The shear stress distribution through 
the thickness of the plate obtained by The F.E.A. and the 
proposed method are shown in figure 3.58.

N=7,9

0.00175

0.0015
N=3

0.00125

0.001

0.00075

0.0005

0.00025

10.2 0.6 0.80.4

Figure 3.57 the assumed deflection function along the
section y=0.5
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0.002

0.0015

0.001
Proposed method

0.0005 F.E.A.

0.2 0.60.4 0.8 1

Figure 3.58 the comparison between the F.E.A. model 
and the proposed method(N=7) for the deflection curves

along the section y=0.5.

Gx 107 Pa

Thickness
-0.03 0.02 0.0301

-2
-4
-6

Figure 3.59 shear stress distributions through the thickness 
of the plate obtained by The F.E.A. and proposed method
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The CPU time for calculating deflection by the F.E.A. 
is 110 sec. The proposed method requires less than 1 sec. 
The deflection of the plate is shown in figure 3.60.

Example 3.15
A plate with arbitrarily shaped holes is a common 

structural element, but is extremely difficult to handle by 
the classical theory of plates. The finite element method, 
so far, is the approach that analysts generally use. 
However, the results from the F.E.A. is not a continuous 
function. It can only produce the stress and deflection at 
some discrete points(nodes). In order to obtain the 
deflection values by F.E.A. which match the same density of 
the results from the proposed method, F.E.A. would require 
considerably more CPU time than the proposed method.

In this example, the unit square homogeneous plate with 
clamped square hole is considered. The edges of the hole 
are clamped and the boundary of the plate is simply 
supported.

In the proposed method, a pseudo plate of the same size 
as the hole can be fitted into the hole, with its boundary 
clamped. The pseudo plate can then be integrated with the 
original plate, inside which the hole is located, and 
analyzed as a whole with the same procedure shown in example 
3.10. The pseudo plate inside the hole can be then 
disregarded.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



www.manaraa.com

1 0 7

S.S.

0 . 2 5

S.S.
S.S.

0 . 2 5
0 . 3 7 5

S.S.

0 . 3 7 5

Figure 3.61 The configuration of the plate for example 3.15

By assuming the same deflection function as equation
(3.46), the formulation of the Lagrangian function L remains 
the same. The constraints are zero deflection and zero 
normal slope along the edges of the hole. In this example, 
14 points on the edges of the hole are chosen for the 
constraints.

The F.E.A. model used for comparison is shown in figure 
3.62. This model contains 1040 nodes and 960 elements. 
Figure 3.63 shows the convergence(N=21) of the proposed 
method for the deflection curves along the section y=0.375. 
Figure 3.64 shows the comparison between the F.E.A. model 
and the proposed method for the deflection curves along the
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section y=0.375. The difference in the maximum deflection 
(x=0.88) is approximately 5.50%.

Figure 3.62 The F.E.A. model for example 3.15

v
0.0012

0.001

0.0008
N=21,25

0 .0006

0 .0004 N=17
0.0002

Figure 3.63 the computed deflection function along the
section y=0.375
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V
0.0012

0.001
Proposed
method0.0008

F.E.A.0.0006

0 .0004

0.0002

x0.2 0 .4 0.6 0.8 1

Figure 3.64 the comparison between the F.E.A. model 
and proposed method(N=21) for deflection curves 

taken along the section y=0.375.

The deflection of the entire plate is shown in figure 
3.65. The CPU time for calculating the deflection by the 
F.E.A. is 223 sec. The proposed method requires less than 4 
sec.

Example 3.16
An illustration of the analysis of a plate with a 

square clamped hole is giving in the previous example. It 
is a relatively simple problem because the clamped edges can 
provide the necessary forces to satisfy the boundary 
conditions and no additional forces are necessary. For the 
case of a hole with free edges, a different technique is 
necessary.
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Clamped

0.25

Clamped
Clamped

0.25
0.375

Clamped

0.375

Figure 3.66 the configuration of the plate for example 3.16

Consider a unit square homogeneous clamped plate with 
the same configuration and subjected to the same thermal 
loading as in example 3.15. To begin with, a clamped plate 
without a hole is considered. The temperature loading is 
transformed to an equivalent moment Mc. The deflection under 
the equivalent moment Mt is equated to zero by assuming that 
the equivalent moment Mt is less than Euler loading (critical 
bucking loading). For the case where the equivalent moment 
Mt is greater than Euler loading(critical bucking loading), 
the plate can buckle. Due to the nonlinear behavior of 
buckling, the proposed method and the linear F.E.A. are 
unable to determine the buckling deflection of the plate.
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The work(Wp) done the equivalent moment Mc when a plate 
is without a hole is zero by assuming there is no buckling. 
The work(Wh) done by the equivalent moment Mt over the
region where the hole is located is as follows:

0.625 0.625
Wh — j  j  Mt(v")dxdy (3.62)

0.375 0.375

Wp = 0 (3 .63)
The total work done is:
W=Wp-Wh (3.64)
The constraints of the plate are:
Gi = v'(0, y i) = 0 for i=l to 9 (3.65a)
where yi=i/10
Gi + s = v'(l, yi) = 0 for i=l to 9 (3.65b)
where yi=i/10
Gi + is = v'(xi,0) = 0 for i=l to 9 (3.65c)
where Xi=i/10
Gi + 27 = v'(Xi, 1) = 0 for 1=1 to 9 (3.65d)
where Xi=i/10
By assuming the same deflection function as equation

(3.46), The strain energy U is the same as in example 3.10. 
The deflection surface of a clamped plate subjected to the 
thermal loading is zero and the moments along the edges of 
the hole can be calculated. Since the moments along the 
edges of the hole that is free must be zero, external 
moments are superimposed at the edge of the hole to simulate 
the effect of a hole.
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The F.E.A. model used for comparison is the same as in 
example 3.15 with different boundary conditions. Figure 3.67 
shows the convergence (N=l6) of the proposed method for the 
deflection curve along the section y=0.375. Figure 3.68 
shows the comparison between the F.E.A. model and the 
proposed method for the deflection curves along the section 
y=0.375. The difference in the maximum deflection (x=0.5) is 
approximately 1.26%. The deflection of the plate is shown in 
figure 3.69. The CPU time for calculating deflection by the 
F.E.A. is 512 sec. The proposed method requires less than 6 
sec.

0.2
- 0.001

- 0.002
N=12

-0 .003

-0 .0 0 4

V

Figure 3.67 the computed deflection function(N=12,16,20) 
taken along the section y=0.375
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Proposed method

0.2
- 0.001

F.E.A.
- 0.002

-0 .0 0 3

- 0 .0 0 4

V

Figure 3.68 the comparison between the F.E.A. model 
and proposed method (N=16) for the deflection curves 

along the section y=0.375.
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CHAPTER 4 
ILLUSTRATIVE EXAMPLES

Introduction

In chapters 2 and 3, the transient temperature field of 
the structure is obtained by the simplified finite 
difference method. The thermal deflection of a structure 
subjected to an assumed thermal loading(temperature field) 
is also determined by using the proposed method. In order 
to solve the deflection of a structure under heat input, it 
is necessary to combine the two schemes discussed in the 
previous chapters in order to evaluate the deflection of the 
structure. In other words, the thermal elastic problem is 
treated in two steps:

(1)calculate the temperature field (transient thermal 
problem)

(2)transform the temperature field into mechanical 
loading and then calculate the deflection of the 
structure

The transient thermal analysis has already been treated 
in chapter 2. After the thermal loading (temperature field) 
is evaluated, the deflection of the structure can be 
determined by the same technique discussed in chapter 3 .

116
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There are six examples in this chapter. Examples 4.1 
and 4.2 are beam problems and examples 4.3 to 4.6 are plate 
problems. In order to illustrate the accuracy and 
computational efficiency of the results from the proposed 
method, it is necessary to compare the results and CPU times 
with the F.E.A. method.

Example 4.1

In this example, a homogeneous multi-span beam shown in 
figure 4.1 is subjected to a heat input(10 Watt) at two 
locations (x=0.3 and 0.7) on the top surface of the beam. 
The temperature value at x=0.2 to 0.4 and x=0.6 to 0.8 
corresponding to the full penetration depth 0.1 can be 
directly obtained through the results of example 2.3. The 
temperature of the rest of the beam is zero during this 
period.

L=1

h=0.1

Figure 4.1 The configuration of the beam for example 4.1
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After obtaining the temperature field(T(x,y)) of the 
beam at that time, the equivalent thermal loading(Mc) can 
be obtained as:

n h/2
Mt(x) = £  b  J OC ET{x, y ) y d y (4.1)

J=1 —h/2

Where b: the width of the beam
The strain energy can be expressed as function of 

deflection (v) as given in equation (4.2) . The work done by 
the equivalent loading (Mt) also can be presented as a 
function of deflection.

’ E l ,
U = f (v")2dx (4.2)

i 2
X

w = J Mt{v")cbc (4.3)
o

The boundary conditions of the beam are v=0 at 

x=0,0.6L, L and 92v/92x=0 at x=0 and L. By assuming the
deflection function v as a Fourier series:

v '  ,rntx> v  . nrcx,,v — Ao + / .  An cos (---) + Bn sin-(---))
n = 1 L  n=l L

The strain energy U is the same as equation (3.26). 
The work done by the equivalent loading(Mt(x) ) is:

W = ~y, Ann2n 2j  Mt(x) cos (nKx)dx - ^  Bnn2n 2j  Mt{x) sin(mtx)dx
n = l  o n = 1 o

(4.4)
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The constraints are thus:

Gi = Ao + £  An = 0 (4.5a)n= 1

Gi = % n 2An = 0 (4.5b)
n = l

ft
Gz = Ao + ^  An COS {zrn) = 0 (4.5c)

n= 1

G< = ^  Ann2 c o s  {im) = 0 (4.5d)
n = l

" .mixs, tr* ,n7DCs.Gs = Ao + An cos (--- ) + + £  Bn cos (--- ) = 0 (4 . 5e)
n = l n=l ^

Where Xs=0.6L

The Lagrangian(merit) function L can be formulated as

j
L — U — w + ^  \iGi

5
I
i = i

By evaluating to zero the partial derivatives of the 

merit function with respect to parameters A.i (i=l, 2, 3, 4, 5) 
Ao, An and Bn (n=l, 2, . . .N), a set of (2N+6) linear equations 
with (2N+6) unknowns is obtained. Therefore all the unknown 
coefficients can be solved and the deflection function of 
the beam is determined.
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The F.E.A. model used for comparison contains the full 
configuration of the beam with 11111 nodes and 1000 
elements. The results from the proposed method for different 
number of terms N are shown in Figure 4.2. The assumed 
deflection function converges at N=10. The comparison 
between the proposed method and the F.E.A. is shown in 
Figure 4.3. The difference in the maximum deflection(x=0.3) 
is about 7.47%. The CPU time for calculating deflection by 
the F.E.A. is 76 seconds. The proposed method requires less 
than 2 sec.

N=10,12

0.00004

0.00003

0.00002 N=8
0.00001

Figure 4.2 the computed deflection for N=8,10,12
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V

0.00001

0.00002

0.00003
0.00004

1
x

Figure 4.3 comparison of the deflection results from the 
proposed method(N=10) and the F.E.A.

Again, the results illustrate that the proposed method 
is much faster than the F.E.A. and that the two methods give 
very similar deflections values.

The composite beam shown in figure 4.4 is assumed to be 
subjected to heat flux at the top surface of the beam. The 
temperature distribution through the thickness of the beam 
can be directly obtained from the results of example 2.2. 
The temperature through the depth of the beam is independent 
of x.
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L=2

steel
Aluminium

Ih1=0.1

1 . 4

h,=0.1-

Figure 4.4 The configuration of the beam for example 4.2

The beam is clamped at x=0 and simply supported at 
x=1.4. The position of N.A. (y0) and the total flexural 
rigidity D can be obtained by equations (3.33) and (3.34). 
The equivalent moment Mc(x) is obtained as follows:

yo + hi yo+fti+ta
M t = J EiOiiTydy + J E M zT ydy (4.6)

y o yo+hi

The work done the equivalent moment Mt(x) is:

u
w = J M tv"dx (4.7)

The constraints in this case are:

Gi = Ao + £  An = 0 (4.8a)
n»l

Gz = £nfii = 0 (4.8b)
n=l
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N
Gi = Ann2 cos (rtft) = 0 (4.8c)

Gi = ^  BnZ? COS (23JC) = 0 (4. 8d)

rfltXs mtXs
Gs = Ao + X. A> cos (--- ) + +X, Bn cos (— —̂ ) = 0 (4 . 8e) 

Where Xs=0 .7L

By assuming the same deflection function as in example 
4.1, The Lagrangian(merit) function L can be formulated as:

By equating to zero the partial derivatives of the 

merit function with respect to parameters Xi (i=l,2,3,4,5) 
A o ,  A n and Bn (n=l, 2, . . .N) , a set of (2N+6) linear equations 
with (2N+6) unknowns is obtained. Therefore all the unknown 
coefficients can be evaluated and the deflection function of 
the beam is determined.

The F.E.A. model used for comparison contains the full 
configuration of the beam with 441 nodes and 400 elements. 
The results from the proposed method for different number of 
terms N are shown in Figure 4.5. The assumed deflection 
function converges at N=6. The comparison between the 
proposed method and the F.E.A. is shown in Figure 4.6a. The

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

5

i=1



www.manaraa.com

1 2 4

difference in the maximum deflection(x=2) is 3.83%. The CPU 
time for calculating the deflection by the F.E.A. is 37 
seconds. The proposed method only requires less than 1 sec.

N=4
0.00025

0.5
-0 .00025

-0 .0005 N=6, 8
-0 .00075

- 0.001

Figure 4.5 the calculated deflection of the beam for N=4,6,8

The stress distribution through the thickness also can 
be determined by the following procedure:

0/(0 = -CXtE.T For layer i(i=l to 2)

El a YeGama = -5-----£  J a iE iTdy For layer i(i=l to 2)
^  hjEj 1-11"-1
j - i  

Ei V  aGmu> = ---£  J CtjEjTydy For layer i(i=l to 2)
D j-l yi-\

The resultcint stress for any layer of the beam can be 
calculated as G =<Ji+(Javr+(Jin . The stress results of the 
proposed method and the F.E.A. are shown in figure 4.6b. 
The slip (shear) stress as shown in figure 4.6b which is the
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resultant stress difference between the two material is 43 
Mpa.

v

-0.0005
- 0.001 F.E.A.

N=6-0.0015
- 0.002

(a)

Slip strej:s=43 MPA
5.00Ef07 ■

0.00 E+00
CM( > F.EA.

Rposed method
11

thickness

(b)
Figure 4.6 (a) deflection by the proposed method(n=6) and 

the F.E.A. (b) Resultant stresses a through the thickness of
the beam

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



www.manaraa.com

1 2 6

Again, the results illustrate that the proposed method 
is much faster than the F.E.A. and that the two methods give 
almost identical numerical values.

Example 4.3

The problem of a homogeneous plate subjected an assumed 
thermal loading with all edges simply supported has been 
solved in example 3.10. A unit homogeneous square plate as 
shown in figure 4.7 (thickness(h)=0.1) is considered and 
subjected to a heat input(20 Watt) at x=0.3 y=0.3 of the 
upper surface. The assumed deflection function(v) is chosen 
to be a double sine series for both the x and y direction.

s.s.

s.s.

Figure 4.7 the configuration of the plate with boundary
conditions in example 4.3
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Ha Hi
v(x, y) = X  X  A® si*1 (Mix) sin (nJty)<n = ln=l
The strain energy U which is obtained by equation

(3.42) is expressed as :
H-4 Nn Nn

U = --- £  j )  A®2(m2 + n2)2® m=ln=l
The temperature distribution T(x,y,z) is developed as 

in example 2.5. The equivalent moment Mt and The work done 
by the equivalent moment Mt can be calculated from equations
(3.43) and (3.44).

0.05
Afc(x, y) = J JSttTtx, y ,  z) (1 + v)zdz (4.9)

-0.05

V’ f d2V 32VW = V Y  Aan[J Mt( —  + —  )dA (4.10)
j»=i n=i dA a y

Since the second derivative of a sine function vanishes 

at the edges of the plate, i.e. 32v/3x2=0 at x=0 and x=l. and

32v/3y2=0 at y=0 and y=l., all boundary conditions are 
satisfied by the assumed deflection function and no
additional constraint equations are necessary. The
Lagrangian function L is equal to the potential energy 
function in this case.

Using the same approach as in the beam examples, the
partial derivatives of L with respect to each Amn are set
equal to zero. The unknown Ann coefficients are obtained 
as:
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4 [ Mt(x, y ) s in (natx) s in (zmy)dA
Ann = ----------      (4.11)

K D(m + n2)

Due to the limitation of the number(32000) of the nodes 
in F.E.A. software, it is not possible to evaluate the 
temperature in the plate with equally space mesh. In order 
to predict a converge solution, three different F.E.A. 
models are used with the following structure:

1. 20 elements in the x direction, 20 elements in the y 
direction and 2 elements in the z direction.

2. 40 elements in the x direction, 40 elements in the y 
direction and 4 elements in the z direction.

3. 50 elements in the x direction, 50 elements in the y 
direction and 5 elements in the z direction.
The maximum deflections (at x=0.3, y=0.3) and CPU

time for the three different F.E.A. models and the results 
from the proposed method are shown in table 4.1. The 
estimated converging value from the F.E.A. models using a 
very large number of elements for the maximum deflection is 
approximately the same as that calculated by the proposed 
method (see figure 4.8a).
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Sec
14000

F.E.A. CPU time

12000Proposed method: 
deflection: 9.7xl0‘6 1000014 CPU time: 2 secco

•H
4JOViH

8000
12 6000<UQ 400011

200010
F.E.A. deflection

40x40 200x300
20

20x20 50x50

<U
e

Dcuu

(a)

N=ll,15o.ooooi

-6
10

N=9
-6

10

-6
10

N=7
-6

10

0.2 0.6 0.80 . 4 1

(b)
Figure 4.8 (a) the comparison of the results from the 

proposed method and the F.E.A. (b) the calculated deflection 
function along the section y=0.3
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Table 4.1
the CPU time the node/

(sec) deflection at 
x=0.3 
y=0 .3

element #

F.E.A. model 1 386 16. 4xl0"b 1323/800
F.E.A. model 2 2930 14.12xl0'b 8405/6400
F.E.A. model 3 11588 13.23xl0'b 15606/12500
method(N=9)

The results from the proposed method and the 
extrapolated F.E.A. results (figure 4.8a) are almost
identical. The results from the proposed method with 
different number of terms N are shown in figure 4.8b. The 
assumed deflection function converges at N=ll. The CPU times 
for calculating deflection by the F.E.A. are orders of 
magnitude larger than those for proposed method.

Example 4.4
In this example, the homogeneous unit square plate with 

clamped square hole is considered. The edges of the hole 
are clamped and the boundary of the plate is simply 
supported. The plate with boundary conditions and subjected 
to the same heat input in example 4.3 is shown in figure 
4.9.
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Following the same procedure as in example 3.15, a 
pseudo plate of the same size as the hole can be fitted into 
the hole, with its boundary clamped. The pseudo plate can 
then be integrated with the original plate, inside which the 
hole is located, and analyzed as a whole with the same 
procedure as in example 3.15. The pseudo plate inside the 
hole can be then disregarded.

s.s.

Q i n

Figure 4.9 The configuration of the plate for example 4.4

By taking the same deflection function as in equation
(3.46), the formulation of the Lagrangian function L is the 
same as in example 4.3. The constraints are zero deflection 
and zero normal slope along the edges of the hole. In this
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example, 14 points are chosen on the edges of the hole for 
imposing the constraints.

Figure 4.10 shows the convergence(N=21) of the proposed 
method for the deflection curves along the section y=0.3.

-6 v
1.25 10

-6
10 N=21,25-7

7.5 10-7
-7

N=172.5 10

0.2 0.4 0.8-7
-2.5 10-7
-5. 10

Figure 4.10 the calculated deflection function along the
section y=0.3

Due to the accuracy of the results from the proposed 
method as demonstrated in example 3.15 and checked by the 
F.E.A. model and the extensive computations necessary for 
the F.E.A. model to simulate the exact temperature field of 
the plate, the F.E.A. model is omitted in the rest of the 
examples in this chapter. The convergence of the proposed 
method will be considered as the solution without further
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checking. The proposed method requires less than 5 sec for 
obtaining the converging solution.

Example 4.5
In this example, a unit square composite plate with 

mixed boundary condition is considered. Since the proposed 
method allows the boundary conditions to be satisfied 
through the use of Lagrange Multipliers on a finite number 
of discrete points along the boundary, it is not difficult 
to handle a mixed boundary condition problem without any 
major modification of the assumed deflection or energy 
functions.

The strategy of applying the proposed method to a mixed 
boundary condition problem is to impose suitable constraints 
according to the desired boundary conditions at selected
discrete points on the boundaries which are not completely 
satisfied by the assumed deflection function. The plate
with the boundary conditions and thermal loading is shown in
figure 4.11. The temperature field is the same as obtained
in example 4.2.

By assuming the same deflection function and applying 
the same procedure as in the previous examples, the strain 
energy U, the work done by the equivalent moment Mt and the 
potential energy are therefore determined. The additional 
constraint points are chosen as the following sets of points 
along the edges of the plate:
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set 1: dv/9x=0 at x=0 and y=0.1, 0.2, 0 .3 

set 2: 9v/8x=0 at x=l.0 and y=0.1,0.2,0.3 

set 3: 9v/9y=0 at y=0 and x=0.1, 0.2, 0.3 

set 4: 9v/9y=0 at y=1.0 and x=0.1,0.2,0.3

Steel
Aluminum

(b)
Figure 4.11(a) the plate with boundary condition for example

4.5 (b) the thermal loading plate for example 4.5
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Therefore, The Lagrangian function L is the combination 
of the potential energy function and 14 constraints. Using 
the same approach as in example 4.4, The unknown A™ 
coefficients are obtained. The results from the proposed 
method for different number of terms N are shown in figure 
4.12a. The assumed deflection function converges when N=19 
to 21. The proposed method requires less than 5 sec to 
obtain a converging solution.

The resultant stress for any layer of the beam 
direction can be calculated as:

G =Gi+Gnw+G»i

Because the thermal loading is the same as x and y 

direction, the stresses in x and y directions (ox l Gy ) are 

the same as the resultant stress. The shear stress (cp) can 

determined by combined the ox and ay.
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v
N = 1 9 , 2 1

0 .0 0 0 1 5

0 .0 0 0 1 2 5

0.0001 N=17
0 .0 0 0 0 7 5

0 .0 0 0 0 5

0 .0 0 0 0 2 5

0.2 0.80 .4 0.6 1

rap=84.5 Mpa
1.50E+08

1.00E+08 -

5.00E+07 •

-5.00E+07 £J CMin CMinios£ o

-2.00E+08 • -

-2.50E+08 ■ -

-3.00E+08 •

z

• Prposed method

(b)
Figure 4.12 (a) the calculated deflection function along 

the section y=0.5 (b) Resultant stress through the thickness
of the plate
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The stress results from the proposed method and the
F.E.A. are shown in figure 4.12b. The slip(shear) stress as 
shown in figure 4.12b which is the difference of the 
resultant stress between the two material is 84.5 Mpa.

Example 4.6
An illustration of how to analyze a plate with a square 

free hole is given in example 3.16. Consider a clamped 
composite plate with a central square hole to be subjected 
to the same thermal loading given in example 4.5 as shown in 
figure 4.13. The cross section of the plate is also assumed 
to be the same as in example 4.5.

Clamped

0 . 2 5

Clamped

0 . 2 5
0 . 3 7 5

Clamped

0 . 3 7 5

Figure 4.13 the configuration of the composite plate for
example 4.6
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Following the same procedure as in examples 4.5 and 
3.16, the temperature loading is transformed to an 
equivalent moment Mc(x,y) and the work(Wp) done by the 
equivalent moment Mt and the work(Wh) done by the equivalent 
moment Mt over the hole region are calculated.

0.625 0.62 5
Wh = I J Afe(x, y)v"dxdy ( 4 . 1 2 )

0.375 0.375

Wp  = 0 (4.13)
The total work done is:
W=Wp-Wh (4.14)
The rest of the procedure of obtaining the deflection 

function is the same as in example 3.16. Figure 4.14 shows 
the convergence (N=16) of the proposed method for the
deflection curve along the section y=0.375. The CPU time
for calculating the deflection function by the proposed 
method in order to obtain the converging solution is less 
than 5 sec.
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0.4
-0.000025

-0.00005 N=12
-0.000075

- 0.0001

-0.000125

-0.00015
N=16,20-0.000175

V

Figure 4.14 the computed deflection function(N=12,16,20) 
taken along the section y=0.325
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CHAPTER 5 
CONCLUSIONS AND RECOMMENDATIONS

Conclusions

It can be concluded from this study that the proposed 
method provides an excellent tool for the analysis of a wide 
variety of thin elastic structures subjected to thermal 
loading.

The proposed method can be used to treat almost all 
type of thin elastic structures with different heat inputs 
and boundary conditions. The main advantage of the proposed 
method is that the boundary conditions can be changed 
without major modification of the formulation as illustrated 
in the different cases considered in this studies.

The proposed method also can be applied to many plate 
problems with discrete and mixed boundary conditions as 
illustrated in example 4.5 and for plates with different 
shapes and types of holes. In all these cases, the boundary 
conditions can be changed without major modification of the 
formulation.

Whenever applicable, the proposed method has several 
advantages as summarized in the following:

140
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1. The proposed method provides continuous (closed 
form) expressions for the deflection and stress 
solution while the F.E.A. only provides discrete 
results at the nodes in the considered mesh.

2. The F.E.A. can not directly provide the slip(shear) 
stress at the common surface of two different 
materials for a composite material structure which 
is subjected to a thermal loading. The proposed 
method can readily determine this information.

3. The proposed method can evaluate the converging 
solution in significantly shorter CPU time for both 
thermal loading and elastic structural analysis.

4. Very large F.E.A. models with fine meshes or 
special mesh distributions may be needed for some 
problems in order to obtain the same converging 
results as the proposed method. For example, in 
example 4.3, the 12500 equal size elements model 
requires about 3 hours CPU running time to evaluate 
the results and this model still does not converge. 
On the other hand, less than 5 seconds are required 
to obtain the converging solution by the proposed 
method.
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Recommendations
The proposed method, although possessing valuable 

advantages in analyzing thermal deflection and stress in
thin elastic structural elements, has the following
disadvantages:

1. The finite difference segment of the proposed 
method can only obtain numerical temperature 
distributions (not continuous functions), the size 
of the control volume in the transient thermal 
analysis becomes very important in providing the 
closest thermal equivalent loading.

2. For a clamped beam or a clamped plate, there are
zero deflection results due to the nature of the
thermal equivalent moment. However, if the load is
close to or greater than the Euler load, the 
structure undergoes buckling and the proposed 
method cannot deal with this non-linear condition 
to determine the deflection.

The following studies are recommended for future 
extension of the method presented here:

1. It is suggested that an efficient procedure should
be developed in order to apply the proposed method 
to problems with combined thermal loading and 
mechanical loading. This should not present any
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difficulties since superposition can be used in 
this case.

2. It is suggested that the proposed method is 
extended to deal with non-linear problems such as 
beams or plates with large deflections by iterative 
or piece-wise linear analysis or averaging 
techniques.

3. It is suggested that a procedure is developed to 
apply the proposed method for structures where 
buckling can occur.

4. It is suggested to extend the proposed method for 
treating structures subjected to fluctuing thermal 
loading in order to predict their fatigue life.
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APPENDIX

DETAILED ILLUSTRATION OF THE PROCESS OF DETERMINING THE 
THERMAL DEFLECTION AND STRESS FOR A COMPOSITE BEAM 

SUBJECTED TO A GIVEN HEAT INPUT

Consider a composite beam with boundary conditions and 
subjected to heat input ( Q i „ = 1 0  Watt for 1 2 0  seconds) at 
x = 0 . 3  on the top surface of the beam as shown in figure A.I. 
The transient temperature distribution for the beam at the 
end of the heating time is first obtained before calculating 
the thermal deflection.

1 m -

rSteel i,
Aluminum

---- 0 . 3m--- - a  J
0.1 m

0.7m

Figure A.l The configuration of the beam

Width of the beam, b=0.01 m
Material 1 : Steel
Density of material ,pi=7900 (Kg/m3)
Thermal conductivity Ki = 45 (W/m-°K)
Specific heat Ci=460 (J/kg-°K)
Young's Modulus of elasticity Ei=2.lxlO9(Pa) 
Thermal diffusivity Pi= Ki/ (piCi) =1.238xl0'5 (W-m2/J)

144
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Material 2: Aluminum
Density of material,p=2700 (Kg/m3)
Thermal conductivity, K = 200 (W/m-°K)
Specific heat, c=900 (J/kg-°K)
Young's Modulus of elasticity E=7.9x10®(Pa)
Thermal diffusivity p2= K2/ (p2C2) =8 .230xl(T5 (W-m2/J)

The Temperature Distribution

The temperature distribution for the beam is calculated
by using the simplified finite difference method. The first
step is to calculate the surface area and volume of each 

control volume (layer) by selecting the thickness(Ah) of 
the incremental layer in the first material (Steel) as 0.01 
m to allow for 10 penetration steps. In order to simulate 
the temperature at the position of the heat input, the 
radius of the control volume (layer) should has much smaller 

volume than the other layers and is taken as half of Ah 
and the finial temperature of layer 1 can be assumed to be 
the temperature at the position of the heat input.

The radius and required heat penetration times
(calculated from equation (A.l)) of the control volumes are 
shown in table A.I.

tP = 0.0891—  (A.l)
k
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Table A.l
Control Dp tp
volume #

1 0.005 0.1578
2 0.015 1.4202
3 0.025 3.9449
4 0.035 7.7320
5 0.045 12.7815
6 0.055 19.0933
7 0.065 26.6675
8 0.075 35.5041
9 0.085 45.6031
10 0.095 56.9644
11 0.105 69.5880
12 0.115 93.4741
13 0.125 98.6225
14 0.135 115.0333
15 0.145 132.7065

Qin

I T

12

14
IS

Figure A. 2 The control volumes of the beam
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The surface area and volume of each control volume are 
shown in figure A.2. They are calculated as following:

The volume and surface area of material 1 in layer 1
is:

bAh2K7u = ----- (A. 2)8
bAhJiA1.1 = ----  (A. 3)2

From layers 2 to 10, the shape of the surface area is 

half-cylindrical, the thickness of each layer is Ah(=0.01) 
and their volume and surface in material 1 are:

2*4j - l)Ah27t
V i.j  =    - for j =2 to 10 (A. 4)

2

2*2 j - 1)A2ot . „ „ „ , _,
Ai. j = -----------  for j =2 to 10 (A. 5)2
Since the first 10 layers do not involve material 2, 

the volumes and surface areas in material 2 of the first 10 
layers are zero.

V2. j = 0. for j=l to 10 (A. 6)

A2, j = 0. for j=l to 10 (A.7)
The Layer 11 as shown in figure A.3 has both materials 

1 and 2. The volume and surface area of layer 11 in 
material 1 is:

Vi.il = d area o a b  + a r e a  o d e + AoJbc - Dpio2n  ̂ (A.8)
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Ai. j = 2JbDpn0u (A.9)

Dpu =0 .105

P
Figure A.3 The layer 11

Since the point p (in material 2) and b (in material 1) 
are on the same heat exchange surface, they have the same 
penetration distance Dpn.

where ri: line_og=hicsc (0) 
r2: line qp

From equation (A. 10), the function of curve_bpc can be 
determined by equation (A. 11) in cylindrical coordinate 
system:

r = n  + r2 = P -  Q csc(0)) (A. 11a)
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2

It-011
V zn  = U J r2d0 - AoJbc)) (A. lib)

eu
1C — 0 1 1

A2.11 = c u r v e _  b p c = b  j r d 0 (A. 11c)
on

The volume and surface area in material 2 of layer 11 
can be calculated through the integration of equations 
(A.lib) and (A. 11c) . The volumes and surface areas in the 
rest of the layers are calculated in a similar way. The 
volume and surface area for each layer are shown in table 
A. 2 .

Table A.2
control volume in volume in area in area in
volume# material 1 material 2 material 1 material 2

1 0.0001963 0 0.00157 0
2 0.001570 0 0.00471 0
3 0.003141 0 0.00785 0
4 0.004712 0 0.01099 0
5 0.006283 0 0.01413 0
6 0.007854 0 0.01727 0
7 0.009424 0 0.02042 0
8 0.01099 0 0.02356 0
9 0.01256 0 0.02670 0
10 0.01413 0 0.02984 0
11 0.01463 0.0026607 0.02648 6.801E-4
12 0.01259 0.0123351 0.02424 1.337E-3
13 0.01183 0.0197077 0.02318 1.923E-3
14 0.01141 0.0266998 0.02252 2.499E-3
15 0.01130 0.0284328
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After defining the volume and area of the control 
volumes, the finite difference equations ,as shown in 
equations (A. 15) to (A. 17), are set up to calculate 
temperature of each layer. The time step (At) is chosen as 
the time required to penetrate through the first layer.

At = tpi = 0.1578 Second (A. 12)

The heat density (HD) of each layer is:
HDi — (piciVi. i + P2C2V2, i)Ah for i=l to 15 (A. 13)
KAi = K 1A1. i + K2A 2. 1 for i=l to 14 (A. 14)
For the first layer :

AtfKAi) „ , „ AtOHi)^ . AttKAi) „T1. t + 1 = ---- Qin + (1------- yr 1, t + ------Ta. e , _ .  _ ,
HDi HDi HDi (A. 15)

For the layer 15:
&t(KAu) m „ At[KAu)

Tis. t  1 =  --------------- T14. t + (1--------------------- )T is. t (A. 16)
H D is HDis

For the remaining layers:
At(KAi) 4 „ 2a t(.KAi)

Ti .  c + 1 =  — ------ - (Ti -  1. e +  Ti * 1. t) +  ( 1    -YTu t
HDi HDi

for i=2 to 14 (A.17)

After setting the initial temperatures of the layers 
and the initial current time(tc) to zero, the finite 
difference procedure begins.
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In each time step: tc = tc +At

For tpk-i < tc < tp*, applying the finite difference 
equations from layers 1 to k. Due the theory of heat 
penetration distance, the temperatures of the rest layers 
remain the same as the temperature of the last time frame.

Ti. t * i = Ti. t for i > k (A. 18)
The finial temperatures of each layer can be determined 

after the current time reaches the final heat input time 
(120 seconds) . The temperature of the first layer represents 
the temperature of the position of the heat input.

Table A.3
Layer# Ave. penetration 

distance D Temperature (°C)
1 0.00 240.73
2 0.01 113.88
3 0.02 72.83
4 0.03 49.62
5 0.04 34.46
6 0.05 23 .98
7 0.06 16.57
8 0.07 11.31
9 0.08 7.57
10 0.09 4.93
11 0.10 3.06
12 0.11 1.92
13 0.12 1.22
14 0.13 0.76
15 0.14 0.52
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The temperatures of the rest of the layers represent 
the temperatures at the average penetration distances (D) of 
each layer as shown in equation (A. 19). The final 
temperature and average penetration distance D of each layer 
are shown in Table A.3.

Lh =  0
Dpi -  i  +  D pi ( A .  1 9 )

Di =  ----------------------------2

The temperature distribution throughout the beam is 
obtained by expanding the temperatures of the layers to two- 
dimensional space. First, as shown in figure A. 4, define 
the origin of the Cartesian coordinate system at the left-
end bottom of the beam and the position of the heat input
(0.3,0.2). The heat penetration distance (Di) to a point 
Pi(xi,yi) in material 1 can be calculated from equation 
(A.20) . For a point P2 (X2,y2) in material 2, the penetration
distance from this point to the position of the heat input
can be calculated in equation (A.21) from the theory of heat 
penetration distance. The temperature of points Pi and P2 
can be solved as shown in equation (A.22) by utilizing the 
table A.3. The temperature distribution (T(x,y) ) of the 
beam is therefore determined.
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(0.0)

Figure A.4 

Di = Vcxi ~ 03)2 + (yx - 0.2)2

where ri=hicsc(02)
r2=-y/(x2 - 03)2 + (y-2 - 0.2)2 - hicsc(02) 
02=tan'x (I (y2-0 .2) / (x2-0 .3)1)

For any D* > D > Dic-i

T(D) = T(Dk - i) + (-•? :) (T(Qc) - T(Dk - i)
Dk -  Dk -  i v 7

for and D > 0.14
T(£>) = 0

(A.20) 

(A.21)

(A.22a) 

(A.22b)
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The Thermal Deflection and Stress Distribution

After obtaining the temperature distribution (T(x,y)) 
of the beam, the neutral axis (shown in figure A.5) of this 
composite beam is determined by utilizing equation (3.2) 
before calculating the equivalent moment.

yo+0.1 yo+0.2J E iydA  + J EiydA =0 (A. 23)
yo yo+0.1

From which: 
y0 = -0.07473 m

y0

T Steel

Aluminum

—  T o p  surface

h1=0.1
Interface-v»mcercaci

Th2=o.i
■ ^ B o t t o m  sBottom surface

Figure A.5 The cross section of the beam

The total flexural rigidity D is obtained as following:

D = k[Ei(  +  hi(—  + yo)2] +  t{E 2{-- + hi{hi + —  + yo)2]12 2 12 2
where b: width of the beam (A.24)
The equivalent moment Mt(x) is obtained as follow:

yo+hi yo+Ai + ta
Afe(x) = J FidiTCx, y ) y d y  + J EMiTix, y ) y d y  (A.25)

yo yo + iii
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The work done by the equivalent moment Mt(x) is:

M tv"dx (A.26)

By assuming the deflection function v(x) as a Fourier
series:

X ,ItlCX, ri . , m ix  ,
An COS ( ) + 2* Ba Sln (-) )n=l 1* n=l

mix. (A.27)

The strain energy U and the work done by the equivalent 
loading(Mt (x) ) are:

U  =
EIK*
4Zj

w
£  {An2 + Bn2)Tl* +n*X 
N NZyr̂i 4n  ill2, (AnBn —l--1- (COS (Ml) COS (iTTTC) - 1),2_3

nsl o«i 
m*n

{n2 - m2)ti

(A.28)

W = -]£ Ann2n 2j  Mt{x) cos ( )dx -  Bnn2K2j  Mt{x) sin (—— )dxn=l o ^ n=l o ^

(A.29)
The constraints in this case:
For v=0 at x=0

w
Gi — Ao + ^  An = 0n=l
For v'=0 at x=0

N

(A.30a)

G2 = £ n 2An = 0n = l
For v"=0 at x=L 

n
Ga = Ao + ^  An COS (nTC) = 0n= 1
For v"'=0 at x=L

(A.30b)

(A.30c)
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u
G* = ^  Anil2 cos (rut) = 0 (A.30d)

n=1

For v=0 at x=Xs=0. 7L

The Lagrangian(merit) function L can be formulated as:
5

L = U - w + XiGi
i=1

By equating to zero the partial derivatives of the 

merit function with respect to parameters A-i (i=l, 2,3, 4, 5) 
A0, An and Bn (n=l,2, .. .N), a set of (2N+6) linear equations 
with (2N+6) unknowns is obtained. For N=8,10,14 the unknown 
coefficients of the deflection functions are shown in Table 
A.4. The results from the proposed method for different 
number of coefficients N are shown in figure A.6.

Table A.4
N=8 N=10 N=14

I sine cosine sine cosine sine cosine
1 -2.92E-6 1.92E-4 -1.09E-4 7.50E-3 0.034467 -1.10127
2 -3.37E-4 9.50E-5 -1.26E-2 -2.56E-4 1.92731 0.12065
3 -1.55E-4 -3.17E-4 4.19E-4 -1.39E-2 -0.21661 2.31035
4 2.46E-4 -1.63E-4 1.21E-2 4.82E-5 -2.24208 -0.2765
5 1.32E-4 1.42E-4 -4.12E-4 8.48E-3 0.28756 -1.85022
6 -6.04E-5 7.62E-5 -4.88E-3 -2.78E-4 1.32188 0.24548
7 -3.22E-5 -1.82E-5 1.42E-4 -2.26E-3 -0.17696 0.82149
8 1.66E-6 -8.01E-6 8.08E-4 5.31E-6 -0.4426 -0.10813
9 -1.29E-5 2.05E-5 0.05565 -0.20461
10 -2.89E-5 -7.15E-7 0.07967 0.02373
11 -0.00813 0.02533
12 -0.00623 -0.00212
13 3.77E-4 -0.00107
14 9.88E-5 3.42E-5
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N=10,14
0.00006
0.00005
0.00004

N=80.00003
0.00002

0.00001

0.2 0.6
Figure A.6 The results from the proposed method for

different number of coefficients N

The resultant stress is the superposition of the 

thermal stress (<Jt) , uniform stress (<TaVe) and bending 

stress (CTm) . In order to satisfy the equilibrium conditions, 
the total force due to the stress distribution in x- 
direction has to be zero and the total moment about the 
neutral axis should be also zero.

For material 1:

Ct = -OLiEiT(x, y ) (A. 31)

_ Ei
\Jave —

hiEx + hiEz

ŷo + ta yo+fti + liaJ OLiEiT{x, y ) d y  + J OLiEiT{x, y ) d y
 ̂yo yo + fti 4

(A.32)
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Go — E iy ŷo+iu yo+hi+taJ (XiEiT(x, y ) y d y  + J (X 2EfT{x, y ) y d y
\  yo

where y0 > y > yo+hi 
For material 2:

G t = -OL2E*r(x, y )

fyo + hi

yo+hi

(A.33)

Gave —
E2

hiEi + hiEi v yo

(A.34)
■>J OLiEiT(x, y ) d y  + J (X iEiT(x, y ) d y
j

(A.35)

yo+in+to

yo + iii

Go — E iy ''yo + hi yo + hi+taJ OCi£iT(x, y ) y d y  + J OC2.E2TCX, y ) y d y
\  yo yo+hi

where yo+hi > y > y0+hi+h2 (A.36)

The resultant stress in materials 1 and 2 of the beam 
can be calculated as:

G = Gt +  Gave +  Gm ( A . 37)
The maximum temperature, as shown in table A.5 and 

figure A.7, through the thickness of the beam occurs at the 
x position of the heat input (x=0.3m). The resultant stress 
at x=0.3 can be determined by using equations (A.31) to 
A. 37) and shown in figure A.8. The maximum shear stress as 
shown in figure A.8 at the interface of the two materials is 
60.9 Mpa.
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Table A.5 The temperature distribution through the thickness
of the beam at x=0.3

y-yo temperature y-yo temperature
0.00 240.73 0.11 2.59
0.01 113.88 0.12 2.12
0.02 72.83 0.13 1.75
0.03 49.62 0.14 1.46
0.04 34.46 0.15 1.19
0.05 23.98 0.16 0.99
0.06 16.57 0.17 0.81
0.07 11.31 0.18 0.68
0.08 7.57 0.19 0.58
0.09 4.93 0.20 0.0
0.10 3 .06

250

200

150 -04

E"1 100 -

50 -

O)<9 O)COCMinCM
OiCOCM 0)COCM

0)COCM 0>COCM O)COCMinCM
COCO COti CO

o

Top interface Bottom
surface surface

Figure A.7 Temperature distribution in the beam 
at x=0.3 t=120 sec
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rSlip stress=60.9 Mpa
100

ma> a>totoCM-100

-200■a
Z -300 -

-400 -

-500 -

-600

Top
surface interface

Figure A.8 The resultant stress and the shear stress between
two materials at x=0.3
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